
A, Cover Pag€

Broad Agency Anoouncement 93-26
CURFJCULUM DBVEIOPIVGNT IN SOFTWARB ENGINEERING AND ADA

Category l and 3 Eoposal

Proposal Titlc: CuldculuE and lbxtbook DovslopEcnt Usiry Ade 9x for the Tbaching of Object-
Oricnted Concepts

Technical Pointofcootacr Hatbert L. Dershem
DepartEent of ComPutor Scienco
Itope CoUege
IIoUan4 MI49422-8000
(616) 39+7510
denhe@cs.hoPe.odu

(On leavo 1993-4 at tho fo owing addrsss)
DopartEent of Computr[Science
Unibd Stabs Ait Force Academy
USAF AcadonY, C0 80840
QLg) 472-3590
hdershe!@cs.usaf a.af.mil

Adminisbativo Poht of Contacl Eliot A' Tbnis
Dcan for tho Nanral Scionces
Hopo Coll€ge
IIoUrnd MI49422-8000
(616\X9+7714
uni@PhYrics.hopc.edu

TOPECO1IEOE DEAN FOR NATURAL sCIENCES

November 9, 1993

BAA #93-26
ARPA/SISTO
3701 Nonh Fairfax Drivo
Allir,ltan, V A 22203 - 17 1 4

TO WHOM IT MAY CONCERN:

It is with sigdficart enthusiasm and excitement that I endo$e the ideas atd concepts Fesented by
the Departnent of Computer Scicnce at Hopc Colloge in this prcposal entitled "Cuniculum and
Toxtbook dsvelopment using Ada 9X for the Tcaching of ObjoctOriented concepts."

The progxam described in this proposal is timciy 8nd innovativo. Ii will allow students to take
advantsge of object oriented 8nd sdvanced prcgramming concepts in out curriculum though Ada
9X. The Foposed curicular endeavor is welcoming of students and it is unde$tanding of the
variancei in backgrounds that studonts bdng with them, espccially in contrast to other available
object orientcd programming environments. It is designed !o meet students "wherc they 8re" 8nd
help students to achieve their fullcst potential of understanding.

Hopo College is committed to suppolt tttis program in cvcry way. My oflico will work wifi Pro-
fgssor Dershcm in a coodinated fashion to insu!€ progremmatic succcss.

We are thankful for the opportunity to submit this pmposal and wc look forward to developing a
vital proglam that will ptovide students \,,/ith the lools necpssary for futurE success in computer
science.

Sincerely,

{^ez;* a./i/^;
Efliot A. Tanis
Doatl for the Natural Sciences

pEArE SCTENCE CENTER/ls IAST l2TH STREET/P.9 8OX 9000
HOTLAN D. MICH IGAN 49 422-9OOA I 616 394-771 4 / F AX 616-394-7923

B. Description of the Project

Statement of Work
Scope

This Foject will rcsult in the Edesign of two courses, programming languages and object-ori-
onted prograoming, so that they aro based on thc Acla 9X language. In additio& the project direc-
tor will rcvise his programming languages textbook so that it includes a chaptet ort Ada 9X under
the object-oriented paradigm, and will cvise tho use of Ada as an illustration of the imperative
and concurrent paradigms to rcflert changcs madc itr Ada 9X.

Technical Approach

Hop€ Crllege is a four-year tiberal afis institution with enmllment of approximately 2,700. The
collegc has had a compute! science depsrtnent since 1974. The dcpartmont Fpsendy consists of
four fi.rll-time faculty membcrs, tbree of whom hold Ph.D. degr€cs in Computer Science, The
d€partment graduatos between 10 and 15 majors cach year.

Object-olionted programming is cunsntly taught h two places in the Hopo Collago Computet
Scicnc.e curriculum. First, in $e progranmiry languages couse, approximatcly two wee,ks is
devoted to tho object-oriented paradigm. 'Ihe languages Smalltalk and C+f arc inuoduced in
accordance with the Fesortation of dle iopic in the textbook which is coauthottd by thc Project
Direato! [1].

The second place that objoct-orientod Fogranming in found is in a opics couse which is offer€d
followhg the Plogamming Larguagcs course and which has the Pmgramning Languagcs cou$€
as a prerequisite. The language used in this couNe in the past has be€n C++.

Thc fust cdition of the textbook mcntioncd obovc uses Ada as s languag€ to illusEate the impera-
tive paradigm. A second edition of this textbmk has just been completed and will bc published in
1994. In that edition the concumnt paradigm has bc€n add€d and Ada is slso uscd 8s & primary
illustadol of that parsdig[In dle textbook's discussion of thc objcct-orientcd paradip, both
editions use the languages smaltalk aral C+r as illustsations. In th€ sccond edition, a chapter is
devoted to each of thes€ laqguages.

Object-Oriented prograrming is one of fte most important and popular lopics in Computer Sci-
cnce today. C).nrendy, the language of choico in most of iodusty and academe is C++. Ada 9X
shows the promise that it might radically changc this si$atio! by pmviding object-oriented capa-
bilities within a weU-designed structued language,In udcr for this to happen, effective educatioal
Eaterials Dust be prcducod which pesent the object-olienbd model in the mntext of the Ada 9X
language.

Thc purpose of this project is to incorporat€ Ada 9X as a Fototype language for the object-ori-
etrt€d paradigm irrto the programming language and object-oriented programming courses. The
biggesr hirdraoce to doirg this in the near futule will be fte lack of textbooks which uso Ada 9X

to toach tho object-odented pamdigm. This Fojoct is inEnded to addrcss this problem by Fovid-
ing a timely rcvision of a toxtbook alrcady on the market.

Specific Thsks

T'hte€ major tasks are ploposed io this proje.ct:

1. Writing a new chapter of the Detshem/Jippirg lcxtbook dcsctibing Ada-gx as it applies to the

object-ori-cnted paradlgn" .Ihis ch&plcr wi11 be for ioclusion ir the next cdition of this tcxtbook.

2.RcvisingthcdiscussionofAdsintheDetshcm/JippingtoxtinElstiontotheimpelstiYeand
concurent paradigms to rcflecl the chsngos in Ada 9X.

3. Rcclcsign the kograoming Lsnguages atd Objcct4dent€d Plogramming countcs at Hope
Collcge to base drem on Ada 9X.

August-Decembsr, 1994 Teach Progranning L€nguages 8t HoPe College using ncn' chapt€r
P€viso chsptcr accordilg to tho €xp€dence using it

July, 1994

June, 1995

July, 1995

Ttmo Frarne ofBffort

Drafr Ad8 9X Object-Orienrcd Chapter for Dersh€ny'Jipping bxtbook

Mate fnal Dvkion !o Object€rienbd Ada 9X chapt€r fG
submission b publisher

Make revisionr to imperative and colcurcnt scctions of D€rstteE/
Jipping tor(tbook to t!fl€ct chang€s in Ads 9X and sond tevisions !o
oublishor

August-Docomber, i995 Teach Object'Oioned Progranning courso at llope College using
Ada 9x

May, 1996 Preparc ryllabus ad other nat€ri8ls from Obiect-Oriantcd
Programming course for diss€mirution and final prcject rcpor1

Summary of Anticipated Results
This pmjert will have two major Fsults. Thc f$t will be N r€vision to thc tcxtbook Programming
Languages: Structures and lifodels th&t u'i[rcsutt in its thid €dition. This revision will contain a
rcw chapter utrder the object-ode ed paradigm that discusses Ada 9X as it Epr€s€nts that para-
digm. It will also havo tevisions !o fre Eeatment of Ada under the imperative and concuqcnt par-
adigm$ ro rcflect the changes in Ada 9X..

The Table of Contents of the Second Edition of dle DersheD/Jipping tcxtbook is given below with
annotttions indicating the changes that will bo made as a rssult of this p!oje4t. Sections which

4

appear in bold wi be modified to rcflect chalgos in AdaJound in- Ada 9X.The new object-ori-

e'rited chapter witt appear between chaptcrs 14 and 15 as i[dicated in ths table'

I. Ovowiew of Programming Lalguages

1. Introduction and Overview
1.1Whatis a Programming tanguage?
1 .2 Why study proganming languages?
1 3A bdef history of Foglamming languages

2. PEliminary Concopts
2. 1 Syntax specificatiol
2.2 Semartics spociication
2.3 Languago Eanslation
2.4 Language design charactodstics
2.5 Choice of language

rI. Imperative Model

3, Overview of Imperative Model
3.1 Data tYpes 8nd bindings
3.2 Execution units and scope of binding
3.3 Contr0l structures

4. Data sseresates
4,ibaia aggregate models
4.2 Arrays
4,3 Strings
4.4 Records
4,5 Files
4.6 Set6

5. Procedural Abstraction
5,1 Pmcedures as sbshactions
5.2 Procedure definition 8nd invocrtion
5.3 Procedute environment
5.4 ParameXers
5.5 Vslue rtturning Procedures
5.6 Overloading
5.7 Comutines
5.8 Pmcedures in Ada
5.9 Exceptions
5.10 Exceptions in Ada

6. Data Abstraction
6.1 Abstract data types
6.3 Encapsulation
6,4 Parameterization
6.5 Monitors
6.6 Data abstraction in Ada

7. Example Language - C
7.1 Philosophy and aPP,roach
7.2 Information binding
7.3 Contol sfuctues

7.4 Data aggregatss
7.5 Prccedual abstraction
7.6 Data abstractiol
?.7 Common library functions

8. Example Language - Modula-2
8.1 PhilosophY and apPloach
8.2 Inforoation bhding
8.3 Control structures
8.4 Data agglogates
8.5 Plocedunl absEaction
8,6 Data abstsaction

Itr. Functional Model

9. Overvicw of Functional Mod€l
9.l Functions
9.2 Functional Programming
9.3 Functioml languages
9.4 FP: a pule furctional largusSe
9.5 Bvaluation of fuctional languagcs

10. Scheme - A Functionsl-Odented Language
10.1 Basic compononts
10.2 Function defnitior
10.3 ExamDles
10.4 Comp-arison of Sch€Eo to FP

i1. ML - A Typed Functional l,anguage
11.1 Featules of ML
1 I .2 BxamDI€s
11.3 Comp-arison of ML o FP

ry. hgic-Odented ModEl

12. Ovcrviow of l-gic-Ori€ntcd lvlodcl
12.1 Introductiotr to logic language spdel
12.2 A pue logic language
12.3 Databsse querY languages

13. Prolog - A logic-Oriont€d Language
13.1 Syntax of Prolog
13.2 Non-logic model featurcs of Prolog
13.3 Examplc progta6s in holog

V. Object-Orientod Model

14. Overviow of Object-Oriened Model
14.1 components of objoctorierted Model
14.2 hoperties of Object-Orieuted Modol
14.3 An example
14.4 Compadson with imperativo model

lchapt€r on Ada 9X \f,ill be add€d hercl

6

15. Smalltalk - an Object-Oriented Laoguage
15,l Overvigw
15.2 Smalltalk syrtax
15.3 Class hierarchy
15.4 Abstlact classes
15.5 AD examDle in Smalltalk

16. C++ - a Hybdd Object-Oriented language
16. I Overview
16.2 Componorts of C++
16.3 An exanple in C++

VI. DisEibut€df arallel Model

17. Ovorvicw of tho Distibuted/Parallel Model
17.1 Process defr[ition
17.2 Invocation of Processes
17.3 Data shaing
17.4 Interprocess comrrumcauon
17.5 Svnchronization

18. Concurre'nt Units in Ada
18.1 Process definition
18.2 Process invocation
18.3 Data sharing
18.4 Interpr0cess communicstion
18.5 Synchronization
18.6 Examples in Adg

19. Occam - a Parallol Languago
19.1 Process defirition
19.2 Plocoss invocation
19.3 Data shadng
19.4 lllteryrocess communication
19.5 Synchronization
19.6 Examptes in Octam

The second tesult of this plojc{t wiU bc th€ d€sign of an Object-Oricnrcd Programming coursc
based on Ada 9X. It is altticipated that in sddition to its submision as s part of the rcpolt on this
project, a paper describing the course will be submitrcd to the SIGCSE Bu[etin.

Proprietary Claims

The Prcject Dkector will rctain propdetary rights to all modifications of the textbook' Ptogram-
ming Languages: Structut€s and Models. Ile will include an acknowledgernent to DARPA in the
book. Ho will have no othe! plopdet!ry rights to ary other matedal created as a part of this
project.

C. Sunmary of Deliverables

1. A new chaptet of the Dcrshery'Jipping tcxtbook oo Ada 9X as an example of tbe Objcct-Ori'

ented paradigm-

2. A list of rcvisions to be includrd in tlrc Thtd Bdition of DcrsheEy'Jipplng textbook to t!ficct

changes to Ada 9X withi! thc i4crativo and concullnt pdadigms'

3. A syllabus and samplc projccb for 8n objcct'cicnted progranning coune^b8xcd on Ada 9X'

rn"*Gu uo zuttoittia i tt rcn or a papu suitable fs submis$ion to tlr SIGCSB Buuetir

8

D. summary of Schedule and Mil€stones

Date Activity

July 1994 A rcugh dreft of an Ads 9X object-oriented chapt€r for Do$hen/Jippitrg will

bo comPloted.

Aug-Dec, 1994 Ploglammhg language course$ using tll9 draft of the Ada 9X chapter will be

taught at fioPe College (by Dcnhem)'

Juno-July, 1995 De$hom will makc final rvisions tothe Ad' 9X object-oricntsd chapter' revise

the imperative and concunent modtl discussions of thc tcxtbook to rcflect

changis in Ada 9X, arut dosign an object'oricnred course based on Ada 9x' He

wil 6'e asisted by a half-tine undergraduate studcnt who will cod€ 8td test

ptognms 8nd work exerciscs.

Aug-Dcc, 1995 Dershem will tcacb the Objcctoriontcd coulsc using Ad! 9x at Hope Couoge

May, 1996 Do$hcE will Pr€psl! fual Eport 8nd deliverables fot this poject'

Key Personnel

Hcrbctt L. Dctrshem (Curiculum Vitae in App€tdix)
Efon expended: four months of fuU-time cffort, dir€cting all sctivities above

Undagraduate Assistant (to be select€d dudng Spling Senest€r' 1995)
Efron exDsnded: two tnonths of half-tine effott

9

E. Previous Retated Work

ProfessolDeNhomhasbeenactiveincomputelscicncecurriculuEdevelopmentfolmorc
,h-;;il;;; His tust activitv was in the design of a coune that combined the toaching of

,,*lr,i"t uii
"o-po*t

scicnce [1]. His work on that project was supported by a grant ftom the

il;;; s;i";;;i;""dation an-d rpsulted in the public&tion of a laboraory manual for usc in

such a course [2].---
moi"r*rbarrr,"m was also funded by NsF for rhe developrbcnt of I Eodular approach to

the tpaching of introductory computer scie;e [3]' As a pan of this prcject' two modules on pmb-

lem solving were produced [41 t5].
Pmfe;or Do$hem has tsught, worked with, and winen about Ada extcnsively' Evidcnce of

rr,i* ir trr" ii*tuoot t"ferenced prcviously pl and is second edition [8] which is due for publica-

t"i i^ fsga. I"
"ddiri"n,

tfre Project oire;oa while on leave during 1993-94 8t-the United Stales

eit norce ecaO".y, *Uf teach atourse on object-orie cd pro€runming urhg Ada 9X dudng the

i;;; i;il;;;; This wiu provide him with backsmund infom0tion to assist in tho initia-

tion of this Fojoct.--
i" uOAii6"ti, p.f"ssor De$hem is F€s€ndy completing work on a DARP- A funded projcct to

rcdrsign the data structures courso to uso th€ Ada language' This projcct will be completcd in

June, 1994.
Professor Dershem is also thc Principal Invcstigator for a Research Exp€d€nces for Und€r-

sraduetes Drogram funded by the Nation;l scicnce Foundation' This Fovides funds for six under-

iluOuu"t L a-o t"t"ut"h in iach of thrce summcrs, 1992, 1993' and 1994'
-*il;;;";-D";t"m

has also bepn activc in cuniculum devclopmcnt and in the activitics of the

So.nJi"*ti Cto"p on Computer Scionce Bducation (SICCSE) of tho AClvt' He sewed s pro--ni"-
.rt"i*iift" rSs8 SIGCSE Symposium and edited ttre proceedings of that symposium [6]''

This oroiect wiu utilize 6e stN netwo* of the Hope C'ollege Computel science Depad'

-*,. ifrii nlwott i, describe in dctail in the Appendix' Pt€s€ntly wc run Meridian Ad8 on that

neiwo*. The vorsion of Acla 9X that we use for 11'" proposed projects witl depend upor tho avail-

ability ofcompil€rs at tho time.
Bibliogsphy

Ul Dershem, ttl., A coulse otr computing 8nd statistics for social sciance' Proceedings of 1972

Conf*erci on Comptuers inThc tJndergradwtc Curricul*' ArlarLt4-GA' 1n2'

[2] Derrhen, IlL., Cozp ier Exercises for Elanenfiry S,a,isticJ, Comprcss,Inc" 1979'

i3i D*ft"., H.L., ,q, modutar inuoduclory computor sciencc coursc, EIGCSE Bu etin'
13(1):177-181, Feb, 1981.

t4l De!sh;, H.L., UMAP Mod e477: Conrputer Problem Solving'Bfuhause! Boslon' Inc"
1981.

[5] D€lshem, H.L., UMAP Module 478: Iteratiorr and Computer Problem so'vi'g, Birkhauser
Boston, Inc,, 1981.

[6] Dolshem, H.L. (ed .], Proceedings of the Nineteenth SIGCSE Technical Slmposium' Assof,ia-
tion for Computing Machinery 1988.

pl Dershem, H.L. an d IWrng,M.J., Prograwdng languages: Modcls and Stuctwes, Wad-
swolth Publishing ComParY, 1990.

[8] Dershem, H.L. an d lippirlg, M.J., Progranvning laquhges: Models and Structures, Second
Edirroz, PWS Kent Publishing Co., 1994. [to appear]

10

F. Cost Breakdown

Task 1: Writs a new chapter for the Thfud Edition of the DershemAipping textbook describirg

Ada 9X as it aPplios to the object-odented Paradigm'

Tlvo months full-time effolt by ploject dircctor (July, 1994 ard June 1995)

Offering of course using materials (August-December, 1995) - ro plojoct cost

One mJnth half-tine asiistarce by undergaduate student (June 1995)

Totat Cost: $17,034

Tbsk 2: Revise rcxt in Delshcm/Jipping text in relation to imp€ntive and concuront paradigm to

refloct changos in Ada 9X

Draftcd by project diector during offcring of coutse (Arlgust-December' 1995) - no project cost

Onc month full-time effolt by ptojoct dircctor (July, 1995)
Ons month half-time assistance by unddgraduote studeot (July' 1995)

Total Cost: $9,090

Thsk 3: Rodesign ofPtogramming Languagcs 8nd Object-Oriented Progamming coutses 8t Hope

College to base them on Ada 9X'

Cou$e dosign and offedng by proje{t dircctot (August'Decomber, 1995) - no Foject cost

One monttr iott-C-e effo; bi ;mje{t dircclor to wdte up coulse and projcct result! (M&y' 1996)

Total Cost: $8,340

Budget Summary

July, 1994 Projoct Directot's Salary (1/9 academic year salary) $ 6'620' '
Prcicct Dir€cto!'s Bencfits (20% of salary) $ 1 ,324

June-July, 1995 Projc,ct Dtector's S8l8ry (2/9 acadomic year salary) $13'900'
Project Dircctot's Bcnefits (207o of salary) $ 2,?80
Half-time student assistant stipend $ 1,500

May, 1996 ProjectDiroclor's Salsry (U9 acadomic year salary) $ 6'950'
Project Di$tor's Benefits (20% of salary) $ 1'390

Total Budget $34'464

1 l

CURRICULM ITTAE
Herbert L. Dersbem

Educstion:
B.S. Urive$ity of Dayton, 1965
M,S. (Computer Science) Purdue University, 1967
Ph.D. (Computer Science) Puduc UniYersity, 1969

ExDeriefice:
Hope College, Assistant Professor, 1969-197 4

Associate Profosso!, 1974-1981
Plofessor, 1981-Prosent
Cbair of ComDuF! Science Departrncnt, 19?6-prescnt

Oak Ridge National Laboratorios, Visiting Rosearch Scientist, 1977-1978
Boston tnivelsity Ovorseas Progran, Visiting Professor, 1982-1983
United States Air Force Academy, Distinguished Visiting hofesso!' 1993-1994

Honors and Awards:
NDEA FsUow Pudus University, 1965- 1968
Honeywell Corporation Fctlow Purduc Univorsfty' 19681969
Project COMP(IIo Awadc€' Darmrouth College' 1972
NAS{ASEE Summe. Fellow, Goddard Space Flight C€nter, 1976

Oak Ridge Associated Universities Summer Felloq 19?7
Grants:

Co-dircclor "lnuoduction of tho Computsl in tho Statistics C\llriculum
"

NSF Omce

of Computing Activities' 1971-1973

Director, "A Modular ApFoach to the Introductory Course in Computor Sciencc"'
NSF hcal Course ImploverDnt Program' 1978-1980

Co-Dbector, "A Microcomputer Lsborabry fot use in Teaching Statistics", NSF
Instrucdonal Sciontinc Equiprrnt hogrsm' 19791980

Dirccto!, "CSNET Member$hip in Suppolt of Comput€! Scionc€ Research", NSF
RUI kogram, 1987-1990

Dircctor, "Computer Science Undergraduate Rcsearch hogram", NSF REU Progffr\
1992-1994

Director, "Use of Ada, Laboratories, and Visualization in the Tbaching of Data
Structutes and Discrete Mathcdntics", DARPA Curdculum DovolopDont Grant'
1993-1994

Publicstions : (23 total, ttFse peltinent to this Foject listed in Bibliogaphy)

Other major sources of Jrpport; None

Related prcposals pendizg.' None

t2

App€ndix - Description of Hope College Computer Networks

Computer Science Department Sun Nehrork
Machine/Part

Sun 4660
Sun 4/470
(2) Sun 4/40s
(6) Sua 4/60s

(3) Sun 4/65s
(2) Sun SPARCstatior 10s
(1) SuIl SPARCstation 10
(32) INMOS tansputers

Peripherals

32 MB memory, 2.0 CB disk, 14,400 baud modem
32 MB memory 669 MB disk
U./16 MB memory 500MB disk, 3.5" floppy
16 MB mcmory 500M8 disk, 3.5" floppy, GX graphics
copflxessor
16 MB memory, 500M8 disk, 3.5" floPPy
32 MB memory, 500M8 disk, 3.5" floppy
32 MB rDemory, 1.0 GB disk, 3.5" floppy
Parallcl processing unitr housed in Sun 4/470

l,ab softwaF includes standad disEibutcd Sunosrunix softwa&. This includcs I distsibution of
Sun's Opeowindows, which is a version of the X windowing system. In addition, sevelal pack-
ages have beon purchased from Yarious vendors including FranrMaker, SunGI6' SUnPHIGS'
Sunlink DNI Dtchst support software, Ccn@rline deccntor 8nd Objec€enten SunPC' and
Adobe Ttansc{ipt. INMOS languages 8nd dovclopEont softwarc at! avail,ablc for the Tlanspubrs.
The lab uses several public domain softwatE pEckagcs including TEX, EMACS, and DEOIEt util-
ities.

Tho lab's softwarE and hardware provide access to thc Intffnot through a coll€ge-owned M€rit
routing equipment.

YAX Network

The college owns two VAX 4000 syslcms which serve the entire campus conmunity fot aca-
dcmic, adninisradve, and library applications, This sysbm is accessible ftom eleven locations
on ca.mpus which have s total of lr|4 stations thet aro Publicly available for student 8cc€s8. In
addition, ther,e are nany otlpr trminals avsilable in offices and laboratories across the campus.

A wids relectior of softwarc is svailsble on the VAX syrtems including the V€ldix VADS system
of Ada softwaro developmenr

PC Network

Thetr is a Novoll local area netnork in the building complex wh€t€ this prcject will be conducted
th8t connects 49 486 systems though a common 6le s€rvct. Tkelty€ight of those sysbms nl€
locatcd in a computer classroom that includcs one HP Laserjet m prinrcr, and e projection sysEm.

13

A Ilope College
Department oJ Computer Science
Hollanrd, Michig an 4 I 4 2 2 - I O O O

(676) 395-7570

May 13, 1997

Mike Shumate
NCTAMS-LANT
9456 Fourth Avenue, Suite 2m
Bldg V53, N9/M
Naval Air Station
Norfolk, VA 235 I I -2 199

Dear Mike,

E@PY

Enclosed you will fnd the Final Report for Air Forc€ Contract# F29601-94-K-0033, Cuniculum
and Textbook Development Using Ada 9X for the Teaching of Object-Oriented Concepts. A com-
plete set of deliverables is also enclosed.

It has been a pleasurc working with you and I gready appreciate the funding providcd under this
contract. Please let me know if you nced any funher informatioD,

Sincerely,

Herbert L. Dershem, Chair

Final Report
Air Force Contract # F29601-94-K-0033

Curriculum and Textbook Developnent Using Ada 9X for the Teaching of
Object.Oriented Concepts

Ilerbert L. Dershem
Department of Computer Science

Hope College
Holland. MI 49422-9000

May 13, 1997

Summary of Activities
The table below indicates the activities that were carried out with support from this conkact:

July, 1995

August-Dccombat
1995

June-July, 1996

August-Decemb€r,
1996

May,1997

Reviewcd the second edition of the textbook, Programming languages:
Structures and Models by Dershem and Jipping to update all Ada refer-
encas to reflcct the changes made in Ada 95.

Conducted thorough review of features of Ada 95 with assistance from
undergraduate students Andrew Van Pemis and Manuel Calderon. These
students were suppo{tod by a National Scicnce Foundation grant under
the Research Experiences for Undergraduales program (CDA 9423943)
This study included a thorough analysis of tho objoct-oriented features
of Ada 95. The final report of this study is include.d as a deliverable.

Designed a course in Object-Oliented programming with a significant
portion devoted to Ada 95.

Taught the course CSCI 495, Object-Oriented Programming at Hope
College using Ada 95. The syllabus for this course is included as a deliv-
erable.

DraftEd a new Chapter for tlle proposed ThirdEAiuon of Programming
Languages: Structures and Modcls.This chapter is included as a deliver-
able.

Taught the course CSCI 383, Programming Languages at Hope College
using the newly drafted ObjeccOriented Ada 95 chapter

Prepare materials for final report

List of delivorablee

l. A Cthical Ewhntian 6thc Fnlw.ww 0{/@95 by.Ao&ow Vor Pr,rois asd lvt nuel Cal-
dsron

2. Sylahrs fsr CSCI 495, Objo'&&mChgcaceirg

3. ProposEd Cluptcr ot Prcgto,,erhtglryeqrca:8@s MM@&!,s, Thidd Edittq,Ttrc
Object-Orientod Modcl b Ada 95.

4. Sy[rbu8 for CSCI 383, Progrsrosiag higuagos

5. Ch4t€r cndine for proposcd Thidftl,fuion{f Pn&/fi,efid,q LrywAec: Sfrucno€t ond Mod-
els

A Critical Evaluation of the
Enhancements of Ada 95

by
Andrew Pieter Van Pernis

Manuel Calder6n

Hope College Computer Science
Summer Research 1995

Prof. Herb Dershem

Table of Contents

Tasking
Protected Types
Protected Type- Entries
Requeue Statement
Task Scheduling
Asynchronous Transfer of Control
Predefined Library- I/O
Tasking Example

Generics
Generics- Unconstrained
Formal Generic Package Parameters
Abstract Data Types and Subprograms
Aliased Types
Generics ExamPle

Strings
Sffings Example

Object-Oriented Programming
Tagged Types
Class Wide Programming
Dynamic TYPe Selection
Public Children
Private Children
Generic Children
Object-Oriented ExamPle

9
9

l 0

l 3
t4

t 6
16

22
22

25
zo
zo
28

Manv new ieatures have been added to Ada 95 to enhance and expand the Ada
programming language. These features affect four main categories of programming: tasking,
genirics. stri"ng minilulation, and object-oriented. All of the new features are improvements of
Ada, but some are more useful then others. Furthermore, not all of the features are exactly what
they appear to be upon a cursory examination. We will examinethese new features of Ada 95,
commiirton their ulefulness, and list any difficulties in using these new features. Wewill also
examine how these new features apply to tasking, generics, string manipulation and object-
oriented programming.

TASKING
Tasking is one of the morc useful features of Ada 83. It permitted different processes to

run concurrenaly. Ada 95 includes several new features that make tasking nrore useful. These
ncw features are explained below followed by an example thal uses most ofthem'

The features:

I . Protected Types
2. Protected Types - Entries
3. R€oueue Statement
4. Task Schedulins
5. Asvnchronous Transfer of Control
6. Prddefined Library - l/O

Protected Tvpee-- -
ln oraer to slmplify tasking, Ada 95 has included the protected type feature. A protected

type is a type thatcontainsi privati part, which is used to pass information between tasks or allow
siveral miks to share information. depending on the Protectedtype's subprograms Attached to
the protected type are subprograms ihat access and manipulate the private data. Since these
subprograms aie executed in a-mutually exclusive manner. the integriiy of the data stored in the
proiectdd type is insured. Thus, protectedtypes help to eliminate the need for additionaltasks to
iontrol the passing of information between various tasks.

A piotecte-d type can be defined in two ways. First a Protected variable can simply be
created.

protected Flag i6
procedure Get (Value: ltem);
procedur€ Put (Value: Item);

private
Data: [tem;

end Flag;

protected body Flag i s

-_ Procedure and function bodies for the variable Flag

end Flag;

Second, an actual type can be defined as protected, and then variables of that type can be declared.

protected tyPe Flag-TYPe i s

-- As in the aboue exonrple

Flag: Flag,Type;

The subprograms of the protected type are then accessed through the dol notation found
throughout Ada.

Flas.Get 1X);
Flag.Put (Y):

It is importanl to note that since functions in Ada have read-only access to the Protected tyPe. any

numbei of tasks may execute funclions on a protected type at the sanle tinle Since procedures
have the abil i tv lo ciranle the values stored in the protected tyPe. only one task may execute a
procedure on u' prot".t .J type ut any given t ime, and no functions may access the Prolected IyPe

while that prccedur€ executes_-
Protected tvpes are arr incredibiy useful lbaturewhen using tasks Not only can protected

tuo", Ua ur"a ro . i"ure scmaphores and f lags. but they can also be used lo prevcnt race condil ions
,iriaotu rfrui"a U"t*"eD tasks. Furthermo;e' since the actual value of lhe protected type remains
private ana can onty tte accessed through the defined subprograms. the abstraction of a semaPhore

or flag is maintained.

Protected Tvpes . EntTies---
Entnes are procedures or functions belonging to pro(ected tyPes that have a ce(aln

condit ion. cal led the'barrier. when an entry is cal led, the condit ion is evaluated. l f thecondlt ionis-

""-
i-f,." i5i""i* U"ay execures. lf ir is false. the entry call is queued until its condition becomes

il;,
-.w-h;;

;; Jniry is qu.u.d. the task that called ii halts Therefore entry calls to the same

Drotected element m\ist be'made from different casks to have any impact'' - ' - ' l ;
i i t ;} ;G;i"s example, thc entry is cal led "win-or-lose : when this cntry i5 cal led the

u^ri"ut"-;oointt .u. ibe eqlal to " l imii or " l imit" for the body to begin executio At the

u"n*"re'"f ih" program, this wil l not be true. Task one calls the entry "win-or-lose" at th€

;Ei;; i;?
-i i ;;;Jf";

i,t *i l i b. queu.d. During the execution of other tasks, t5" '6xrisr" wil l

*3..eiiu"""a 'win or lose" wil leventually eiecute. When the Person pla)ingthisgame gets

"limif' or "-linit" points, a win or a loss is reported.

The example:

package for-game i s

protected tYPe game i s
entry wln_or-losel

"t
a gra"t

end for_game;

package bodY foriame is

protected body game is
4

",rt"y
tin-o.-los"lt,hen ((points = limit) or (points = -limit)) is

- will getexecuted if the banier is broken
-- it will display a message depending on points.
begin

i f points = limit ahen-put-l ine{"
YOU WON !!!! ' ,:

ek€
puuine(" YOU LOST ??? ");

end if;
end win_or-lose:

end game;
end for3ame;

Example ofa call:

task one:
task body one i6
begin

mySame.win-orJose; - this call will b€ queued, until the barrier
end one; -- becomes true.

Reoucue Staten€nt-W[en
a r€gt eue statemcnt is ex€cuted, for example "requeu€ reset", e[try "resct" is placed

in the entry queuc.

entry signal when tru€ is - banier is always true
begin

i.qo"o" ,."e1 -- WHERE THE REQUEUE STATEMENT IS USED.

end sig;l;

In the preceding code "reset" will be placed in the entry queue. When €nlry "signal"
finishes execuiing, then all executableenlries taiting in the queue will be executed. - Following
these. "reset" wiliexerute if its banier condition is true. A more complele example of requeue is
given later.

Task Schedulins---TA
95.xpands fte capability of rasks by allowing task sciedulinS, Siving certain task are

given priority over other tasks-. Thui, when tasks enter a queue for a processor or other resource.
asks witb a Lisher priority are given prcfereoce over those with lower priorities.

Task icheduling'is added io any tasking p.ogram with a single statement in the
soecification of each task-

task Example i s
-Entries for task example

pragma niority lVatue;;
end Exarnple;

5

The pragma priority statement assigns the task a priority bet\r'een 0 and 30. with 30 as the highest
prioi i tyiand 0 the lowest. When tasks are competingfor a resource. the task with the highest

i 'r iori t i wi l l gain control of the resource f irst. l f several tasks with the same priori ty are wait iug
for lhe resource they wil l be handled using a FIFO queue.

Task scheduling, once underslood, is easy to implenrent and allows for greater control over
the order of execution of tasks. Furthermore, including task scheduling in Ada 95 does not
invalidateany Ada 83 code, since tasks default to the originalFlFO queue method of scheduling if
they are not assigned priorities. A further extension of task scheduling is interrupr priorities'
which can be usid when tasks need to immediatelygain control of resources, as i an abort

Asvnchronous Transfer of Control
The statement

s€lect
delay 2.0;

then abort

end seleci:

-- asynchronous tmosf€r of control,

seemsto "not" le working. CNAT docudentation says it isnotyet implement€d. lt supposed to-
wori so that the statcmei'ts between the "then abort" and the "end select" are executed first lf
thev take lonser toexecute thanthe t imespec i f ieda f rc r the"de lay" 'execut ion is i te r rup ted ,and
insiead, the itatements betwe€n the "deiay" and the "then abor(" are execuled. When the
statements take less time than specified in the delay, CNAT works fine But, when execution is
intenupted because time elapsed, a "segmentation fault" is rePorted.

Predefined Librarv - I/O-==--ir
T--O-libr"ryof Ada95 remains virtually unchanged from that of Ada S3 Several

useful new feat-ures have been added to it however, such as Flush, Look-Ahead' and
C"i imiaiui". Furthermore, in order to support programs writren under Ada 83, no Previously
exist-ine funcrions were removed or changed in any significant fashion'

ihe procedure Flush immediately flushes a buffer to a l i le, or to the current oulpul
aependinsoi *hirtrera fi le tas specified. The Flush procedure is also imPortant when working
*iit t"i i !. sinc" .ost implemenuiions wil l have rhe rasks ourput to a buffer that wil l then be sent
to ttr"

"urr"ni
outpu, nle when the task is completed. and not before, making debugging difficult'

ptustr simotifies rhe debugging process by foacing the output of a task to be immediatrely sent to
if,"."J"iiii" i"rt""a.f re"riaiiihg in the 5uffe. unlil the taik finishes executing. Lrok-Ahead is a
,."""airi i- if,"i

"i io"s
the userio determine the next cha.acter of a fi le and input without

ioniu.i"e ii. The procedure Cer-lmmediate reads the nexl characterfrcm a file or the current
i"""i i i i i ir

"".
i i

" i" i lable,
and does not skip any l ine or page terminarors l ike rhe sranda.d ger

il;;;;;". citi'r"i aooiiions in"ruae Modular-io a;d Decimial-lo as subpack-ages' and the abiliry

i;;ih;i";"i;; s;LEiiot. Srana"ra-En6r. and Current-Enorfor error files ln-general the
predefined l ibrary Text-lo remains unchanged betwe€n Ada 83 and Ada 95 only a lew' nelplul

features have been added to it

An Exarpple of Taskine----E
foll"*rne

"')(ample
was taken from the Ada 95 rationale and was modified a little so

lhar incorpomtes moat of the Ada 95 features of tasking

PscLrs! f(rf_evtnt I s
protect€d tJtPe evcnt i.

€olrJ tr4il;
lntrJ €i8[st:

Pilvat
€ntry rc9!{;
oconEd: b@leonF fdrq

anil fot_cvcht:

prckrg. bod/ forrevtnt I r
proa.ct d body evanl l.

.ntrJ ligtul rh.n treo I r - b{riar trdn4}a fiuc
b.gln

puLlin{' Signal tu lr.cfltcd ')i

flrrih;

antry wsit stan eqrrldlr
b.gln

puuildirylit i6 (,(€cued'):
?lurh:

a||d wair:

lf writbount > O than
oq*rtd := t!e;
d.l.y(l3):
tlq|tauc rctct;

rnd lq
.!rd rig|aE

plocadut! lraitrl l3
m,_ev€nc evonq

lqk tyDe orlc;
trsk body one i 3

prrgm! Priority (3o);
begla

7

- b nrb flt$.&p ttfitrF tI9 bd.rE &qlFue,
.. wERg'tr'HEtFQ[rtsrs srATgrrrB!,lr ls usED.

Grtry rcapt trh.n waitbount E 0 I t
beghr

put JiE(n R.€et is e,(ccurrd. ');

flu.h;
@trF4= fsls.:

and ft€et;

cnd ev€nt;
crd foLevenq

put_ l rnc { " F i .s t $ t l i t ") :
f l u s h i

pur,linc (" Sccond Nnil "):
f l ush ;

lrsk body lirr) i s
pragme Prrcril)._ (29):

b e g i n
delay(l . ())r
put_linc(" Firsr siSnal r')i

f lush;
nu_e!cnLsrgna{1
delay(1.0) i
plt-line(" Semnd Signal"):
l l u s h i
nl)_e!enl.signal;

\ r l lm!(1. .3) o l onc;

b€gln
n u l l i

€nd matnl ;

Herc is what happens when the pre.eding program cxccutes:

First, the 3 "first waits" are queued (3, b€caus€ there are 3 tasks of type "one"). Then the "first
signal" gets called, this rcqueues ireset'. Thus, "resct" is queu€d b€hind the 3 "waits". The 3
"waits" arc now executed, arld the "reset" follows. Then the same thing happens again with the
"second waits" and "second signals".

The tasking features used in this example are:

Protected typcsi
Typ€ "Event" is a protected lype.

Protected types - Eotriesi
"Wait", "Signal", and "reset" ate eDtries,

Requeue Statement;
"r€iueue reset" is in entry "signal".

Task Scheduling:
Task type "onen has a higher priority than task 'two" therefore the tasks of the array will start
execution ro ensure tbat tfe 3 i'first wails" are queued before the "sigml" in lask two is called'
This enables the use of the requeue statement.

Predefined Libmry - I/O
"flush" is from the library I/O. Without "flush" we may be getting th€ outputat an incoraect time
and we won't really know what is happening. What happens without the "flush" is thattheoutput
goes into a buffer. This buffer is outputted to the screen only when the task finishes execution or
when some other things happen. To be sure we get the output in the correct order, we use
"flush". This ensures that the output is displayed on the screen wheD the "put" statement is
reached.

GENERICS
With generics, we can save writinga lotofcode. Generics allow us to write packages and

procedur€s for an undetermined type (the gen€ric parameter type) and instantiate the
package/procedure for any typ€ we need. For example, suppose we need a swap function for
integers, one for reals, and one for characters. Instead of writing the same function 3 times, each
time only changingthe types in the paramcters, we write a genedc function, and instantiatc it for
integers, rcals, and charactcrs. We could also instantiatefor strings and arrays, as you will sec
later. Ada 95 gives us new features that allow us to enhance Ada's generic capabilities, including
generic packageswith unconstrained types (strings, arrays, etc.). Wewill first explain each new
feaeuae, then we will give a complete example that implements a generic stack, using these generic
Ieatures.

The features:

l. Generics - Unconstrained parameters.
2. Formal Generic Packasc Parameters.
3. Other Improvements;

-

4. Abstract Typ€s and Subprograms.
5. Aliased Types.

GGn€rics. Unconstrlined
In Ada 83, g€neric packages did not accept unconstrained typos as parameters. Thatis, we

couldn't instantiat€ a pactagc with the type "string" or some sort of array type. This limited us
somewhat. Now, with this new featur€, Ada 95 pcrmits the use of utcoNtrained types as
parameErs to a genenc.

This feature does, however, have a necessary limitation. We are trot allowedto declarean
uninitialized object of type T (the unconstraioed parameter type) in the body of the generic. Thc
following code will illustlte this limitation. Suppose we watrt to create a generic swap function
for unconstrained type ard lct type "T" be the generic type:

procedure Swap (A, B: T) is
Temp: T; - <--- This is not valid.

begin
Temo:= A:
A :=-B:
B := Temo:

end Swap;

But when we write "Temp: T" we are declaring an (uninitialized) object of a generic unconstrained
type, which we are not allowed to do. There are ways around thiS. We could still create the swap
function using pointers, but this is a complex prccess.

1'he way to make a generic-unconstEined package is:

generic
type T(<>) is privatet

package gen_stack i s

end ge;-;tack;

Functions or procedures that use the unconstrained type are written as follows:

procedure push(a: in T) is

be g in

"na
puiit,

'fo instantiate the package for th€ type "string" we write:

package string_gen_stack is new gen-stack(string);

At the end oI this section I \,r ' i l l give a complete example in which ge encs - unconstrained wil l be
used and exDlained further.

l-ormal Generic Packaee Parameters
The concept of generic packagesis expanded in Ada95 with the addition of formalgeneric

package parameters. Formal generic package paramete.s allow the user to define a generic
package based on a previously compiled generic package, which is accepted as a iormal parameter
bf the-ne* g"ne.ic package.

'Thus
a generic paikage iould be created for complex numbers that

acceptsone
-of

the viriouJfloar types for instantiation. Then another generic package that handles
polar operations on complex numbers could be created and would accept any instantiation of the
originaicomplex numbers packages as a parameter uPon its instantiatton-

lncorporating formil gen-e.ic paikage parameters into a program is fairly sirnple. lf. as
above, we wire creaiing two generic packages, where one handled complex numbers and the other
handled polar operations on complex numbers, these packages could be defined as

ge ||eric
floaf_ lype rs orglt6:

package Generic-Complex-Numbers i s
type Complex is private:

function "+" (Left, Right: Compl€x) return Complex:
--(Similarly for -,/,ft, etc.)

end Generic,Complex-Numbers;

with Generic-Complex-Numbers;
genetic-

with package Complex-Numbers is n€w Generic-Complex-Numbers (o);
package Ceneric-Complex-Polar i s

and

t 0

-- Types, functions, and proc€dures necessary for polar operations on complex number

end Generic Complex_Polar;

Instantiation of these two packages is then accomplished by the following statements.

package Complex_Floats is new Generic_Complex_Numbers(Float);
p.ckagc Polar_Complex_Floats is new Generic_Complex_pola(Complex_F1oas):

. There are several problems with this feature of Ada 95, First, if an original geoeric
package us€s an unconstrained parameter such as

generic
Float_Type is digits +:

then. a.subtype or derived type of the ulconstrained pammeter must be declared if that typ€ is
needed within a second package thar uses the original package as a formal generic pic'kage
pammeier. Second. given an instantiationof a generic package, no more than olne ne* g.n.ic
package may be instantiated within a single progrgm using thai original instanriated packa-ge as a
formal generic package parameter. For example if there wir€ three-generic packagejfor co;otex
numbers, GcNumbers. CCPolar, and GCVectors, where both Gtpola; and 6cvecrors had
GCNumbers as a formal generic package parameter, then the following instantiation of the thrce
packages would be invalid.

package Complex_Floats iE n€w GcNumb€rs(Float)i
packsg€ Polar_Complex_Floats is new GCPola(Complex_Floats);
pockage Vector_Complex_Floats is new Gcvectors(Cbmpl€x_Floats);

This severely restricts the uscfulness of formal generic package Darameters. As far as could be
d€tcrmincd from the existing documentation for Ada 95; this ls i restriction imDosed by Ada 95
and nor specific to any implementarion.

. Despit€ these limitations, formal generic package parameters are still quite useful for
creating generic systems within Ada 95. This feature is just unable to reach its full potential with
thc.prcsent system, but it still does gr€atly expand the usability and usefulness of generic
pacKages.

Abstract Data Tvpes and Subproerams
An Absract Data Type is a type that serves as parent to other types. It can have dats

elements. that all its children inherit, and abstract procedures and functions that, although they
don't do anything, require all childrcn to have there subprograms as w€ll.

For examole:
Suppose you have 3 different types of tires. The 3 tires havc common fcatures, but no tire

has features that are a superset of the features of atrother tire. Thus, no tire inherits qualities
from another. There is no reason that one of these tires should be the Darent of anv of the
others. [n thi s case,. an abstracl base_tire_type could cootaio the common q-ualities of ali 3 tires,
and then have each tire tvDe inherit from bas€ tire tvDe.

An advaDtage is that this leiithe programmer imitateilid real world in a better way.

An example:
Consider a phone directory where information for "Basic', and for *Complete,' can be

stored. By .Basic," I mean relativesand all acquaintances. By "Complete', I mean ilose friends.
Since I am mostly interested in "Complete," I want more information bn them, Thus, the entries

1 l

for "Complete" will allow me Io enter more information.
, . The base-rype is "Basic Enrry,'which is in packagecalled ,,Base Direcrory Enrry,'. l .his

Jbstract type has a data erementcalled "Name". Thisrequiresalldirectoryentriestohaveaname,
(regardless.of "Basic" or "Complete"). It also has an abstract proiedure called ',Display,,,
requiring all directory entries to have a way of displaying themselves.'
,.]Ngnnal_Entry " inherits from ', Basic_Ently,i and adds a data element called ',Telephone,,.
I t a lso Includes the proced^{c ' 'Display' ' . Remcmbcr, , 'Basic_Entry" is rhe abstract type and has
ihe. abstrachubprogram ."Display". This means thaial l types inheri l ing from i t , wi[6jve to have
tnelr owl l ulsptay-, s cn ls the case heR,

^ "Compiete-Entry" inherirs from "Normal_Entry and adds the data elements Address,(ommentl. and Comment2. l t also overwrites ' Normal _Entry, ' ,s
, Display".

The code for these types foliows:

package base_directory_entry i s

type basic_entry is abstrsct tagged
record

name: string(1,.100);
end record;

procedure display(bei in out basic_entry) is abstract;

end base_directory_entry;

prckage norm al_directory_entry ig
packsge int_io is n€w integelio(integer);
use lnt_to;

type normal_entry is new base_directory_entry.basic_entry with
record

telephone i string(1.. 100);
end record;

procedure display{ne: in out normaL_entry):

new normal_entry with

procedure display(ce: in out complete_entry);

end normal_directory_entry;

I 2

€nd normal_dircctory_entry;

Aliased Tvpes
^ Pointers have been_ grearly enhanced in Ada 95 through the use of aliased types.
l)rcviously- it was not possible to create pointers to objects declaredis variables or consrants. 'Ihe
addrtron ot aliased types ro Ada 95 allows a pointerto point to an object, insteadof needing to be
dynamically created as before. Aliased types are used in the followin! manner

type Float*Ptr is access all Float;
typ€ Const_Ptr is access conctant Float;

Pointerl: Float_Ptr;
Pointer2: Const_Ptri
A: sliased Float;
G: aliased constant Float := 9.8;

Pointerl := AAccessl
Pointerz := GAccesst

ln thedefinition of an access type. the all qualifier indicates pointers which will point to aliased
variables and thus have read and write access, whereas the cilnstant qualifier indicates those that
will only have read access to the variable to which they point.

^ A liased types now allow for easy manipulation of pointers, without the worries of dangling
relerences. Furtbermore, aliased lypes allow pointers to point to constant values, restricting such
pointers to.read only. even when they point to a variable. Furthermore, constant pointe;s and
variablc pointers cannot be interchanged, but constant pointers need not point to a constant. For
example

package body normal_directory_entry i s

procedure displa)(ne: ih out normal_enlD) is
Degrn

pu(" Name : "); pu{ine(ne.name);
Put(" Telephone : '): pur_ l ine(ne,telepnoner;

end display;

--a pointer to a constant
--a pointer to a variable

procedure display(ce: in out complete_entry) is
beg in

display(nomlal_entry(ce))i
put(" Address : '): put-line(ce.address);
Pu(" CornmentI : " l : put_l ine{ ce.comment I);
PUT{ " Comntent2 : ') i put_l ine(ce.comment2):

end display;

Pointer2 := G'Access
Point€rz :- A'Access

since Pointer2is of Const_Plr lype. Pointer2 would have read access only to G or A with the
above assrgnment statements. even though A is a variable. Conversely. a variable pointer could

l3

nol be assigned 10 poinl to a constant.

- , A l rho r rgh rhe) < i r c ,no t \ e r) use fu l t o r c rea t i ng l a rgc l i nked l . 5 l so ro rhe rpo in te r5 l ruc lu re r ,
L , . ' l * i . l y_ f : : .

*
" qe , r i sed ro f c rea r rnBsma l l . l i nked s t ruc ru re \ . t hep rob len rw i rh (r ca r ing ta rge

r.nKeo st.rctures wlth alr"sed types is that each node needs to be declared as a variable. whiie th]s
e t r ' ' , r na tes the p rob l€m o l dang l i ng re fe rences , i t i sno tve rye f f i c i en t ,no r i s i t asdynamicasa t rue
rnKeo srrucrure. ul course. a llnked structure using aliased types wouid be easy to rearrange andmanrpLrlale as ncce-ssary. since rhc poinrers can bc directly assigncd to point to t 'he various ;dcs,wrtnor|t tne need ot a temporary poinrer to hold on to a disconnected node. which would become a
danglrng felerence i. a normal l inked struct.re. Furthernrore, al iased types can be used to poinr
i 'r to the middle of contposite rypes. Thus, i t is not necessary to creati i pointer to a recoid, to
i ccess \ome t re td o ' t ha t reco rd . hu t ra the r t he no in te f can hc ass ipned l o po in t d i rec t l) (o rhe
desired f ield. as Inng as tha I f ield is marked as al iased.

An Dxarnple of Generics
"l he fol lowing example implements a stack of

any{hing. That is, the statenrent

package int_slack is nei" stack(integer);

instantia{es a stack of inlegers- The same can be acconplished with str ingsor any other type,
constrained or u constrained.

l he same problem occurs here as in the "swap" function. Tohavea l inkedlistwe need to
declarc a rccord in which one of the elements is of type T (the generic unconstrained type). As
you know by now, we cannot do that. Thewayaroundthisistousepointersorastheyir ical led
inAda"acccssva r iab les " . ' l ' ha t i s , i n the reco rd , i ns teado fhav iDgane lemen to f t ypeT ,wehave
a pointerto it (an access variable to type T). Therefore, the recordcontains one element that is a
pointer to T. and ano(her that is a pointer to the next element (since the stack is implemented as a
l inked l isr).
. . It turns out that the "generic unconstrained" feature can be used to create many different
kinds of data structures, such as stacks, binary search trees, hash tables and so on. Thisis very
useful, because, for example. AVL trees are not tr ivial to rewrite each t ime we need them for i
dif ferent type. This way, we just instantiate our generic AVL tree for rhe rype we need and rhat is

l'he code for the seneric stack is as followsi

-'This rmpleolenLs a slack of unconstrlined rlp€ T.
- Ir hrs pR,ccdLrrc push.rnd lunclron F()p.
- Pushr ukcs an clcmcnl ol qpc T.
- pop: rc(urns an clemcnl ol-typc T,

with ad.r.rc\l_io. ada.slings.unbound€d, ad&inlcger_(exl_io, ada.lloal lc]iL,ioi
use ada.re\r_ro, ada-strings.unboundsl, adainleger_tcxr_io, a(Llll@t_tc\t_rci

generrc
tJ p€ T(c) is pr ivater

packag€ 8en_st.rck is
typo T access rs pr ivate;
type lr st n.xlc l

l 4

typ€ linked_lisl is rcc66 lisl-nodc;
type lisl-n(xle i5

pdara : T3occss;
next : linked-lisl;

i i integer;
ll: linkcd_li.t;

- this will bc poinling &' th€ data T

- ller€ lhe *l{ck will bc.

P.occdurc Frsh(a: ln T);
funcllon F p fttum T:

prlvrte
type Tiacltsstr r.c..r .lt Ti - poinr.r h d|e gcneric t$e T

end gen-rcack;

p.ckrg. body 8pn-6Ek l3
stacllenoc exceptioo;

procadorr Frh(a: In T) I5
tcmp : linko(Uist;

b.gln
trmp ;= ncw lbi-nodclrcw T'(a), ll);
ll := !?rnp:

.nd pu8h;

?onctlon pop rrtlm T l,
- if it ie null, rhclr ia will rcrurn null

@mp: linkedjist;
b.8ln

la U=nuuth.n
nlra €tack-error; - Ilis€ an excepiion

al3€
t€mp :: lli
ll:= ll.next;
rtturn remp.pdala.r I li

cnd lt
etrd PoP;

cnd geLslacki

The followiag shows how to iqstantiate a stack atrd use it.

procedBrc main i6-
packege sningjen-stack is new gen-stack(sttitrg):
u6e stringjen_stack;
push(" Hello ");
push(' Matruel ');

l)

pu(pop);
Put{pop,:

end mair;

The progranr would outPut:

Manuel Hello

Strinss-----Freviously,
Ada did not support str ings to a large exlent Alrhou,gh thc str ing lyPe was

defined, i t only ai lo$ed slr ings of f ixed length. and lhe only oPerations Jefined for lhe slr ir lg t lPc
u

"t" "on.ui"ni, io' ,
und conrpiarison Thus. I major expansion toAda95isthc PredefrneJ l ibrarieq

for str ings. There are several new Packages covering f ixed length boLrnded, and unbounded

s t r i ngs ,a i rnc l l ascha ra . t c rm:pp ing6e tweens t r i ngs F i xed leng ths t r i nSsa rc i l r i ng j$h i chhare
a sctiensth and muslbc pcddcdil lhc dcsircd slr ing isnol longcnoughtofi l l thcstr i trg Boundcd
lens ths ; i nes havea ma i imunr leng (h bu ldono tnecessa r i l 5have to f i l l l ha l l c r rg lh (rnb ' rLu lde ' l

str i ies are sir ings which carr be of any length.- '_'
tnlrnu ni* functions are defined u-ithin each of these paclages for the different tt les ol

str inss. So;1e of the most imponanl f 'nctions are those which al low the user to convert between

rhe t lhree str ing types. The majority of the functions are for manipulating str ings, such -as
i i". : ! i .""t l i i i , i" i i i lng rhe head;r r; t of {he str ing or countin€ the numberof occttrrettces of a

i"6i i-n *irt t in a str i ;g. As well as functions ior maniPulal ing the slr ing t) l 'es there are

""roari3-
i""", i .". defined for bounded and unbounded sir ings All of these new-predefined

rii,raiv pi"il"gi, iaa significar)rly ro Ada 95. by rnaking it simpler and more effrcienr for the user

to work with strings..' -"in.ii"a-oii"tailing
all of thc functions and proccdures d€fined in lhe new predefined

fiu.uru oa"t"e"t. only th"ose functions or procedur'es used in the example prog-raft wil l be
examin;d aftei the actualprogram For more information refer to aPPendlx A 4 ot the Ada vJ
Reference Manual.

An Exapple Prosram for Strinss-Tf,;Drdffil;lh-is
example &cepts message strings of up to 256 charactersin length and

"n"oa"r
oi,i".o'a".. The code usid by thl program to tnnllate messages is entered by the user

and is slored as a character mapping function

with Texl- lOl use Tc\ l - lOi
11lth Ad&Charactcm.Handlingi uE€ Ada Clura.te$ HardlinS;

with Ada-Shngs.Utlb()undcd; use Adi!Sltings Uoboundcd;
with Ada"srings Boundsl i uEe Ada.Strin8r.Boundsli
wlth Ada-Strings Fixcdl use AdaSlrlnss Fixcdi
wtih Ada.Strings.Mapsi use Ada Slnn8s.MaPsi

procedur€ CodeMaler i s

package Codeshn8s i s new Cenenc-Bounded-tinglh(26); us€ Codestrinssi

protected aYPe Messages i s
function Rcad retLrrn U ntounded-Stn n8i
procedure Add (NewMessaSei Unhrundal-Srnng)i
procedure clcar

lb

priv.tc
ThcMe$sa8q Unburxkl-String := Null-Unbound€d-String;

end Mc.\Tage6;
prot€cred bodl' M€ssag6 l€

tutrclloo Rcad rctum UDboundo$tring i s
begtn

rcturn TheMe$age:
€trd Red;

proccdurr Add (NewL{e$agq Unbound€d-Strin8) i s
b.gln

TheMesfalF := TheM€s&{e & NeNMessagei
€nd Ad;

proccdurc clcsr t .
b€gln

TheM6sags i: Null-Unboudled-String;
end Clerr;

end McasalFs;

MflSdmt€souct CodcdMessafc,Drcododtvr!€satc: Messrges:

t.sk ErFoder i t
.nt"y lncotning(lvl.6erge: Unbouded-S8ing);
entry Cod€Defn(Origi@l,Cod€: Bound6d_SEing);
€ntrJ Quit;
prtgrhr Priodty(t;

cnd Enco&i;
trrL body E$oder I s

typ. lvlapRr l3 .cc.3i rll Ctutecler-!,,1+ping;

CodcRc MapRr;
Map: rurrcd Chamcl€r-llapping;
Finish€d: Bmle€n := &he;

bcaln
I o o p

selact
acc€pt lncoming(McqeaSd Unbound.d-Srin9 do

putJin(i<<<Encodinp>>r),
daclara

. Copy: Striogr= TojtrinSod€8lage) i
begln

CoPY:= To-Low€(CoP!')'
Txanshqcopy,CodoPk &ll);
Codcdlaca6iSaAdd(Io_Utrboundasf ing(Copy));
Wi[sclfDdtrucl"Oear;
DecodedMassaSe.Ct€ar;

end;
puLtine.("<<<Complet >>>'X

cnd Incoming;

accept Cod€Defn(Origiral,Code Bound€d-String) do

l7

Map := To-lvlapprng(ToJlrin8(O.igioal)'To_sEanS(G'Je)):
C(xlcPk := lvl.rp'Acccss:

erd C(xjcDcl rl

acc€pt Quit do
Finished:=Truel

end Quit ;

delsy(l .O)i

exi t *hen Finishcdi

cnd Enc\xler:

tssk De(der i s
entry lnc{)lning(Mcsrugc: Un&}urdcrj-SUing);
entrJ C(xleDcln(Odginal,C(rlei Boundsl-Shng)i
.ntrJ Quit ;
pragma ftiorit)(3)r

€nd Deqrderi
l!6k body Dsjdler i s

Llpe MapPLr i s acce66 all Clunctcr-MaPPinS:

CodcPlrr MsPPl.i
Map: alhsed Chrl*-lcLNhPPl n8:
Finishedi Bmlcan := Falsei

bcgln
l o o P

rcc.Pt lnooming(Messgq U nbundcd-SrinB) do
pul-line("<<<Decodl nP>>") i
d.clere

Copyi SLrinSr= To-StrinS(Mcssagc)i
b . g l n

CoPYr= To-t-o\\'e(CoPY);
Tr.rnslate(CoPY,Co'dePtrall)l
Dc.dt€dMcssnge.Add(To-Unboundcd-SlrinS(CoP!));
WillSellDestruct,Clear;
CqledMessagc Clear;

end;
Pul-linc(

i <<<ComPlcrc>>>");
end lncornlnSi

scccPt CodeDefn(Original'Gie Bound€d-Slring) do

Map := To-Mappiog(Io-slring(Cod€)Joj'rin8(Original));
codcPtr := MaP'Access:

end CodeDefn:

acc€Pt Quit do
Finished:= True;

end Quil;

l 8

dehy(I.o):
€nd selec(;
exit rvhen Finish€d;

t$k Crea&Code l f
entry Newc(e;
entrJ Quir:
pr.gm. ftiority(7);

e.d cftdccodc;
t.3k body crq.lrecodc I s

Finishcd: B(blean := Falsel
b.gld

l o o p

r.ccpt Newcode do
daclara

Original Bound€d_Sting := Null_Bouded_String;
Cods Boudcd-Slridg := Null_BoundEdJtring:
Origincharcodechar: Clhadcr.r;

b.gin
pu(.linc('rEn@r a r.r io exir,);
loop

pu('Ent€r the chriacter of thc originul rcxu ');
gc(Originchar):
skip_tirc;
I t O.iginchar = '.' th.r

axl t ;
ala!

I f (Codcsrdngscodn{O.itir|.l,To_Sc(Oidnchar))X}) rh.r
pullitF('That cl8mcter har atEddy bocs er ced.");

clslf no(h_Lrtrr(Odgnchnr)) th.n
puLline{"Tht cfrstlcter is nol valid.");

€ l6G

Od8inchar := To_Loipe(OriFncha.);
Apped(O{ignrl,Originchrf);
l ooP

pu("Eobr |he cha&cfer of drc oodcd taxt "):
gp(Codeo|sr):
skip_tin€;
| | (Codestridgs.Coun(Codc,To_Set(Cod€Ctar)>O) th.r

Ftuinq"Thst chalsctcr ha6 alft2dy b€en €nt r€d.");
cl t€

Appctrd(Codqcod€Char);
cxlt:

cnd if;
€nd loop;

end I f;
€nd l t
€ xlt whcn trngth(Original) = 26:

cnd loop:

t 9

Encodef .C(eDefn(Onginjl,C(d€);
Dc(xjcr.C(rlcDelh(Ori8i &rl,C(xlc) ;

€no;
€nd Nc$'Qxlc;

rcccpt Quit do
Finish€d :=True:

cnd Quir;

detay0.0) i
€nd sclcct;
exl l when Finishedi

end crcurecoil€;

task Conlroller i s
prsgm. Ftiority(o)i

cnd Conuollerl
task body Conldlcr I E

Choicci Char&teri
Finishcdr B(xt€ln := Fslsei
M€$agcr SlrinS(1..:56)i
L,ength: Nlrur.rl i

b e g l n
dcley(5.0):
l o o p

Flush;
new_llne;
puuinc(rWould you like ll).i)i
puLlinc(" l). En|€r a Mcssagc");
pul_linc(" 2). Encod€ a M€ssaSei)i
puLline(" 3), D€code a lvlcssage')i
pul-line(" 4), Chsnge lhc Codc");
put-line(" 5), V i€vr lhe ouncnl en(}led messlrgc. |);
put-line(" 6). View the cunenl d€oJdsl ncssage.");
putJinq" 7). Cler.rall mcssagcs.");
putjine(* 8). Quit");
new_Ine;
po(iEnrer your choicc (l-8): ')i

gc(Choice)i
skip-linei
new-tlne;
case Choice I I

when rlr=> putJine(rrEnler thc me€sage belowr ");
geuinc(Mcssagc,l-ength) :
WillselfDeltnrct Add

CIo_Unbundcd_Slring(M$sage(t..L€ngrh))) ;
whcn'2' + Encoder,lncoming(Dccod€dM€ssage.Read & witlselfD$truct.Read)1

Put-line(iThe coded message is "):
puLlioe{To_String(CodedMe38age, Read)) l

when 3' + Decoder.lncoming(Code.dM€ssage.Read & willselfD€strucl.Read);
pudine("The decdled mesclge is: ');

20

puUinc(To,Slring(Dccul€dMcssage.Reid)) ;
whcn 4r => Crcatcc(xlc.Nc\ Cqle I
rrhen '5' => puL Irnc("'l hc cuffcnr cnd)dcd mcssjge is: i):

pur,linc(To Slnng(C(xlcdMcssrgc.Rsd));
$hen '6' :> pul_linc("Thc curcnl dccodcd mcss!8c is: "):

pul_Unc(To Stnng(DccrxlcdM6e8e.Rcf,d)):
wh€n 7' => W iiiscil Dcsktlcl.Clc.r:

C(xiedMessagc.Ciea|

, -
tuJedi \ ls$f ' c lq :

En.txlcr.Ouir:

;;.il:=-:i;,",
wlcn oLlrcrs + pur_1inc("'i hlr choicc is nor \ alid.,,)i

cnd c!rs!:
nc\._linc:
ex i t $hen Fin ishcdr

end l(x)Dl
cnd Conlrollcr:

l regi n
Crcrrtcc(xic.Nc\r'Culc:
delay(1.0) :

etrd CqlcMdicr:

The following functions and procedures were used in the example program and are fronr
the library packages Ada.Characters. Handling, Ada.Strings.Unbounded, Ada.Strings.Bounded.
Ada.Strings.Fixed, or Ada.Strings.Handling. It is inrporrant to note that many of the
subprogmms exist as both functions and prccedures-

First, bounded length strings are implemented by using a generic package, so bounded
leDgth strings were instantiated to be oflength 26 i|l order to hold the entire alphabet.

The '&' operator takes two strings oi the same type (bounded, unbounded, or fixed length)
and concatenates tllem into one string.

A character mapping functioi can be defined through the usc of thefunction To_Mapping
which accepts two fixed length striogs and returns a function which will urap a char'acter'in the
first string to a corresponding character in the second.

Thc function To_String rvill conl'ert eithcr an unboundcd or a bounded string to a fixcd
length string with a length matching that of the original bounded or unbounded string. The
functions To*Unbounded_String and To_Bounded*String will convert fixed length strings into
unbounded and bounded length strings respectively.

To-lrwer is a function that takes a string and converts all of its characters to lower case.
The procedureTranslat€ takes a string and translates it using a chancter mapping function

provided as one of the parameters to the procedure.
The function Count counts the number of instances of a specific substring or character

within a string.
The Boolean function ls_Irtter determines whether or not a chamcter is one of the letters of

the alphabet.
Append is a procedure that adds a character or substring to the end of a string.
The funciion l-ength retums the length of a string.
lt is important to note that get and put procedures are only defined for fixed length stdngs.

Thus, in the exampleprogmm. the size of the message is limited to 256 characters because it nrust
be read as a fixed length string, but it is converted to an unbounded string for use within the

2 l

progrant. The problem of only being able ro read and wri le f ixed lengrh srrings can be solved in a
n0mber_of ways. The simplest method to orrtput erlher a bounded oi uDbou;ded str ing is to use
the To_Slri g functio| l ike so

put line(To_String(The_Bounded_or_Unbounded_String);

Reading strings of indeterminare length as input is a little more difficult. The string could be read
character by chamcter and each charactercould be added onto the end of the strins;s it was read..
which worrld worl well for u0bou[ded slr ings. bul \aould req rre a larqe inrounl oI error
checkingfor_unbounded str ings. Or. srr ing iDtur could be brokerr rrp inro irnal ler i ixed length
str ings which are then concatenated together to forrn the entire str iog. The easiest solutioo,-of
course, is-to l imitthe length of str ing being entered ro a set lenerh. $hjclr \ !ould by definit ion
makc il a ilxed lcngth string-

Obiect-Oriented Proeramminp
l 'he are three main components to objecForiented programntrng, encapsulation,

inheritance, and polynrorphism. Encapsulatton was provided in Ada 8J through the use oI
packages. Ada 83 also provided inherita ce r.vith derived types. The addit ion of polymorphism
has madeAda 95 a t.ue object-orienled language. The new features in Ada 95 which are related to
Polynorpnrsm afe

I. ' fagged ' l 'ypes

2. Class Wide Prografiming
3. Dynamic Type Selection
4. Public Childreo
5. Private Children
6, Generic Children

Taeqed Tvpes
PolymorphismisaddedtoAda95throughtheaddit ionoftaggedtypes.' fheinheritanceof

tagged types al lows for the creatioD of derived types simply and eff iciently. This inheritance is
extended to al l types derived from theoriginal type. This can be seen ina simple example which
has the followiDg hierarchy

Rectaagle
/ \

\ L . 1 | /

Square Cuboid

v
Cube

In the above example Cube inherits from Cuboid which inherits from Rectangle even though
Cuboid is not defined as tagged.

Tagged types allow for object oriented classes to be dcfined easily. Any funclions or
procedures which immediately follow a tagged type definition will be the operations associated
with the class defined by the tagged type and will be the operations inheited by children of the
tagged type. Thus, rhe hierarchy above couLd be created as follows

22

type Rectangle i6 tegged with
record

trngth: Floar:
Width: Float;

end record;
function Size(R: in Recrangle) return Float is
begin

.eturn R.l-ength * R.Width;
end Size:

type Square is new Rectangle with null record;

type Cuboid ie new Rectangle with
record

Height: Float;
€nd record;

function Size(C: in Cuboid) return Floar is
begin

, ̂ . retrrn C.kngth * C.Width * C.Heighr:
eno)lzel

type Cube ie newCuboid with null recordi

The first class. Rectangle, is the base class from which all of thc otherclasses inherit. It conEists
ot a record. with two fields, Length and Width. There is also one function defined for the class,
5rz€-, which.computes the area of thc rectangle. The-next class, Square, is an exact duplicate of
Kecrangte-. $nce me record ts not expand€d, no new functions or procedures are defined, and the
Innenteo luncuon)rze rs not redelrned. ln a more complex structure, where a Derimeter function
was-.defined for Recrangleas well, the difference betw-een Square and Redan;lecould be more
readily seen,^since Squarc's perimeterfunction would be diffirentfrom Rectaigle's. Cuboid is
also d€riv.:1from Relraigle, butit expands rhe record by adding the field Heigh'i. Furthermore,
with the€dditioo of Height, the funcrion Size must be redefined'for Cuboid.

-Fina
y, similar to

Square, Cube isan exact duplicate of its parent Cuboid.
- Anolher important fe;turc of tagg;d rypes is that new types derived from an original tagged
type can be placed in s€parate packages and compiled separately. This allows foi extenl-ion
without disturbing the existirg code further promoting encapiulation. since each class is contained
wrm,n a separately comptted program urul.

Clasg Wide Programmine
, . A useful €rrension of tagged types is class wide programmirg. For each tagged typ€ T

there is a typcT'Class, to _which any typ€ qerivedfrom T can be converted. This is-viry iieful
becalse it allows T and all types derived from T to be passed as parameters to procedures or
functions. Furthermore, pointers caD be created to point to; class wid! type declaririg them to be

aype Ciass_Ptr is acccsc T'Class;

The.n if.a primitive operation is calledusing eitherthe pointeror the parameter the.r nc.n tr,a pnmluve openuon I s called usrtrg eltier the polnter or the parameter the program will
rmprrcrlry choose le operatlon appropnate to the type of the class wide object. This choice of
appropriate operation to matcb Lhe class wide type is called dispatching.

Thus, as in tbe example hierarchy froq'tagged types, i poitir to a class wide type could
;ned to pornt to R€ctanglelirst, then to Square, then Cuboid. and finallv to Cube. After thebeassigned io poinl to R€ctangle first. th;n to Squaie, tddn CuUoia, and finally to Cube.

polnter rs asslgneO. rt could be DaSSed as a Darameter to a Drocednre which .2llc thFpointer is assigned, it could be passed as a pammeter to a procedure whicir calls the primitive

23

operation Size on the pointea, and since the pointeris a potnter to a class wide rype the programauronraricatty setects rhe appropriare Size fu"iri_ r.i
"*[.i

ir," i]il;;ii;*,
type Class*ptr is acceos Rectangle,Class;

Shape_Ptr: Class ptr;
A: Rectangle;
B: Squarel
C: Cuboid;
D: Cube;

procedure Shape_Size (Shape: in out Class_ptr) i s

begin

Size(Shape.all);

ena Sha[_Size;

Shape-Rr.all := A;
Shape_Size(A);
Shape_ftr.all:= g;
Shape_Size(B);
-- etc.

This can also be -accomplished without the use of pointers. A procedur€ can be deiined so thatits
l1:T,:l:r^,:*-1:L1r: yjd-e,type. Then the procedure can be ialedon eachihape and again thepnmlnve opera[ons are called as appropriate.

procedure Shape_Size (Shape: in out Rectangle'Class) is

begin

!izelShapel;

€nd Shap€_Size;

!hape-Size(A);
Shape_Size(B);
-- etc.

_ tt is importantto note that when using poinrers to class wide types, the pointe. must be
initialized to point to the value of the class wide type when slorage is aliocat€d to it. Thus, in the
example program, i n order for. a poinrer ro point to Recrangle_, Cn object of type Rectangle musl
rrrsr De oeltneq, ano tnen ue potnler must be tnluallzed lo that object.

Dynamic Tvpe Selection
Ada 95 is further €nhaflced through the addition of dynamic type selection. Basically,

dynamic type selection allows the definition of pointers to subprograms. Furthermore, rheie
pointers can be used to pass the subprograms as parameters to other subprograms, which greatly
expands the capabilities of Ada 9-5.

Pointers to subprogram units can be defined in two ways. A pointer to a function would

24

be defined as follows

type Function Ptris access function (A: Typel; B:Type2r...) return Value-Type:

Thus, Function Ptr is ao access tvoe to any function which has a first parameter ofTyp€1,second.paramerer of Type2, etc. dnd retuins a vatue oi Vai"i_iiil. "a ii,'iriil, to a p.ocedure ismuch simDler-

type Procedurc_Rr is access procedure (A: Typel; B: T1pe2; ..,);

t.*Ou{-"=t]:
ll_1"-",T. rype, ro any procedure which has pammelers of Type l. Type2. etc.uynamrc rype serectron has a rarge variety of possible uses. lt can i; used to construct aqueueor proceoures to be executed on a certainvariableor variables. Orit can allow a procedure

l.^:ElE!:-r-fy:,i.": or procedurcs based on setection routinei within tf,"-iiJip-""0ur". er*, itcouro De useo to create a lunction which calls anotherfunction, passed as a parameter. reDeatedlv.Yet. ir is the simple elegance of irs use thal i. tt
"

rno.t out"r"noi.ig ;p""it idi;o;:-**",'

Public Children
. Ada 95-allows packages lo be srructurcd into hierarchic.l libraries, in which chlld Dackaeescan De cresleo I rom exrstlng packages. This allows for packages to be expanded withoui the n&dror recomp rng or drsturbing working code. A public child is a child package which is visibleoutsroeor tne hlerarchy ln which it exists. Although iIs visible declarations do not have access touepnvare part ot lts parent. a public child's private part and body can both access the private part

oI lls Darcnt.

-^--,9li l991:!g:lareeasilydefined.inAda95. tf for example a packagetor f loaringpoinr
comprex numbersexisted, and was called Complex_Numbers, theh a ciild paikage whichiould
handle v€ctor operations on floating point compiex numbers coutd b"

".""ted'""
ioiio*.

packoge Complex_Numbers.Vectors i I

-Specifications for vector op€rationg on complex numbers

end Complex_Numb€rs.Vectors;
package body Complex_Numbers,Vectors i 6

--Function and procedure bodies for operations in specification

cnd Complex_Numbers.Vecrors.

Then, to use Complex_Numbers.Vectors in a program or packagc a simple ,with, statement is
requfeo.

with Compl€x_NumbeN,Vectors; use Comptex_Numbers.Vectors;

It is impoftant to note, that if elements from the package Complex_Numbers were also oeeded,
then a 'use' st-atementwould be requircdfor Corirplex_Numbers aiwell, but a .with.statement
would not.b€ necessary, sin-c€ a 'with' statement is implicitlydeclarcd for a parent, when a ,with'
statement is given for one of its children.

One of the main problems of the hiemrchical libra.ies is that itr o.der to make use of all the
packages within the structur€, a use statemeDt for each package must be iucluded, which could
trcome cumbersomewhen using a librarywith a large numberif children, grandchildreo. etc. or
carrs to chrtd pact€ge procedures.lunctions, etc. must be ofthe form:

25

<child package name>.<name of typeJfunctionlprocedurcletc.>

Which i a large libmry would become unreadable.

. Of course there are also many advantages to the hierarchical library structure. The most
importanl advanlage rs the lacl that exisl ing code is not disturbed when packages ere expanded
thrcugh the use of a child p^ackage, becausi the pArenr package does nor need rio be recompiled,
whicl l n)akes ir very useful forcrealingclassesforobjeci-orienledprograms. Addir ionally. pareni
pacKages can ctepenct on lhelr chtldren. th-rough t le use of with clauses. and children can depend
on their sibl ings. againthrough the use of with clauses. as wcllas depend on completely separate
packages as is nonnal.

Private Children

. An_ addit ional expansioo of the hierarchical l ibrary systen of Ada 95 is the conceprof
private chi ldren._A private chi ld is.a chi ld unir, in rhe l ibrary srructure, that is completely priv;re ro
its parent unit. Fufihermore, a privare child is only visible within rhe subtree ro6ted ai its parent
unit. And, since it is not visible outside of i ts parent,s subtree, a private chi ld can access the
private part of its parent.

. A pri^vate child.is defined€xactly like a public child, excepr the word private is placcd at the
beginning of the specif ication. Thus if rhe child package Complex_Numbirs.Vecrorc was to be
changed to be a private child, the code would be changed to looklike this

private package Complex_Numbers.Vectors i s

-- lrxactlv as fretore

Private children are a useful feature conceptually, bur without a large hienrchical library
structure to support th€ir us€, the usefulness of private ciildren is greariy deireased, complicatin!
what could othenrise be a simple program.

Using private children pr€sents some problems similar to those found in using public
children. First, using private children further complicates the hierarchical library structure which
must be maintained, Second, just as in the use of public children, private children require a use
statement, and maybe a with statement, for each package from the structure which is to be used, or
a cumbersome prefix system, ifthe use statement is not included.

The benefit of using private children is that packagescan be expanded without the need for
recompilation, and at the same time remain private outside of the tree rooted at the packages parent.
But this alone is not sufficientjustification for the use of private children. There must also be a
complex enough library structure to warrant their use.

Generic Children
A generic child isjust the same as th€ other kind of children, but generic, which means that

it can work for different types of variables, thus makiog the children a lot more fl€xible. For
example, ifyou want a genericchildof "int€ger," you instantiatethe package for "integer" and you
are set.

Things I noticed:

The compilerdidn't let me instantiate a child generic package inside the main procedure in
the main program. Thus they have to be instantiated in a separatefile. Sinc€ the child package
needs to refer to the generic parent, the parent must also be instantiated in a separate file. ln the
example package "real_complex_numbers" (instantiation of "complex_numbers") and package

"real-c91nplex-numbersJolar" (instantialion. of "complex_numb€n.polar,) are in separate filesNotice rhat the iationale savs to instantiaie p"if"g" ;"6rpi"i_""mbers.polar.
thefollowing way

package float_complex_numbers_polar ir new complex_numbers.polar

This doesn't work Instead, the package must be instantiated by

psckage fl oat_compler_numb€isJrolar is tr€w float_complex_numbers.polar.

. Generic functions, procedures, and packagesar€ very useful, Tberefore, generic children
:j:

also v.ery lseful. tt is aiso good tharthe]gcneric childreni;;eu".ess'iJiiJp-rt""te
"tem"nt"ofne DalEnt-

An example of a generic child;

- This is a generic package

generic
type float_type is diAitso;

prckage Complex_Numbers i s
typc Complex ic prlvate;

frnction "+" (bft, dghn Complex) retun Complex;- similarty "-", "*", a;d '/"

enaL4"xlumters;

package body complex_numbers i s

- Function and procedure bodies for the package complex_numbers

aoa*mplr -on nU"o;

- This is a generic child package:

generic
pickagc Complex_numbers.polar i r

function Polar_to_oomplex(R, Theta: fl oat_type) rctu.n C.omplexi
fulction 'abs'(dpht: Complex) return floai tvoe:
function Arg(X: Gmplex) returr floet_rypeJ''

end complex_numbers.polar;

27

An Exgfnole._of gbiect-OTiented Proerampinq in Ada 95
_ _ _ I he lol lowlng example reviews the main features of object,oriented prograntning in Ada
95. The example is an expansion of the example given in the section on taggid types.- ln this
example an abstract base class called Polygon is created. The classes derived-fiom potygon nave
the following hierarchy

package bodJ conrplex_numbers.polaris

--.Function and procedure bodies for the package complex_numbers.polar

end complex_nombers.poian

- This is the package that conesponds to the instantiation of- "complex_numbers" with floais.

with complex_numbers;
package float_complex_numbers is new complex_numb€rs(lloat)l

This is the package thal correspond to the instantiation of
-- complex_nrrnrlrrs.polar. or actually f loat_complex_nuDtbers.polar (b(caLrse
- lhat 's lhe packag€ lhat corresponds ro complex_numbers insrantiated
- - l o r l l oa ts) -

with complex_numbers.polar. fl oat_complex_numbers;
package fl oat_complex_numben_polar is n€w fl oat_conlplex_nunlbers.polar;

Class Polveon - abstract
Data - Position_X, Position_Y
Subprograms -Set_Position (X,Y)

Perimeter(P)

!
Class Ouadrilateral
Data - S I,S2,53,S4
Subprograms -Set_Sides (S I,S2,53,54)

Perimeter (Q)

J
Class Rectansle
Subprograms -Set_Sides (L,W)

Area (R)
Iv

Class Souare
Subprograms - Set_Sides (S)

l<-

Subprograms -Set_Sides (S 1,S2,S3)
Perimeter (T)

J
Class fueht Trianele
Subprograms -Set_Sides (B,H)

Area (RT)

Furthermore, in order to show true encapsulation, each of the classes will be
package and lhese packageswil l form a hierarchical l ibrary sysrem of parenr
with the package for class Polygon as its root.

placed in a sepamte
and child packages,

Class Triangle
Data - Sl,S2,S3

2A

.. Cla$ hlygon
--+--'---*----,--+-
ptuksge Poly_Pack I s

type Polygon L obltrllr a.gged *fuh

Rlsirioo,* Roar;
Fosilion_Y: FIoat;

and llcord;

proccdurc Set_RNitim (X,y: ln Floati ShaF: out R)l!.gon);
functlon Peridrcr€r (e Folygon) rtltsltr Flo&r ls .b6t;r;

end R)ly_Fdc*:
prck{e body Poly-hck I !

proccdurc S€r_Rtsirion (X,y: In Ftodi Shapcr our pdlSq) | s
b.gln

Shape.Position*X := X:
Shape.PoritiorLY :. Y;

.nd Set_Po8itiooi
end Poly_Prck:
-o'-"----------,o--
- Cla$ Triangle
""roi-,____---"_-e!-

prchge Poly_hchTri_Pack I d
typ. Trianglc lr nci? Polyton wlth

r.!COrd
Sl, 52, S3r Roat:

.nd ncord;

pmc.duE S.LSidca (A,B,C I n R@t; Shapc: out Triangle);
functlon furimetlr CI: Trianglc) rtturn Flost;

cnd Poly_Pack.Tri_hck;
prck{e body Poly_PaahTd_pack I s

proc.dun ScLSid€s (A,B,c: I D Float; Sha!'q out Triangle) I !
bcgl n

Shape,Sl := A;
Shape.S2 := B;
ShaF.S3 := C:

end S€t_Sid6;

lun.tlon &rimet€r (I: Trilnglc) fltu]rr n@r I s
begin

Eturn T.Sl + T.S2 + T,S3;
€nd Perimctcq

Gnd Foly-Pack.Tri_Pack;

- Class Right Triangle

with AdaNum€rid.Elementary_Functio$; use Ada"Numerics.Elementary_Functionsi
p{ckrge Tri-PockRightTfi-kck i s

type Rightjriangle ls new Trianglc wlth null recoid;

29

procedure S€t_Sjdes (B,H: tn Fk)ar; Shape: our Righl_Trian8le);
.
tunct ion Arca (RTj Rlfhr_Tn nglcr rcLurn Fl ut ;

erd TriJdcI.RiEhrTri p.r(t I
packrgc bodJ Tri_pack.RjghtTri_p.rck i s

procedure Sel_Sidcs (B,H: in Floar; Shap€: out Righl_Tiangte) i sb e g i n
Shape.S I := Bl
Shapc.S2 := Hr
Shape.S3 :: Sqr(B*B + H*H)l

€nd Sct_Sidcs;

function Arctl (RT: Right_Tridnglc) r€turn Fl(xlt I s
begln

r € t u r n 0 , - 5 * B x H ;

end Tri_P,rck.RiShtTri_packl

-. Clals Quadrilaleral

peckrg€ Poly_Pack.Quad_tuck I !
type Quadrilatcml i s n.$ potlgon wlth

tacord
Sl, 52, 53, 54: FtQr(i

cnd rccordi

proc.dure ScLSides (A,B,C,D: ln Floaq Shsps out euajrilalcral)i
functlon perimcler (Q: euadrilstenil) retum Floar;

erd Poly_FackQuad_Pack;
Packrg€ bod), Poly-Pack.Quad_Pach I !

proc.dur. Sc(_Sides (A,B,C.D: In Fbat; Shapq out euadril8tcral) l E
begln

Shapc.Sl r= Ai
Shape.S2 i= B;
ShaF.S3 := Ct
Shapc.S4:= Di

end SeLsidcsi

functlon Ptrimctcr lQ: Quadrilnlcml) rcturn Floel i r
begin

Eturn Q.Sl + Q.S2 + Q.S3 + Q.S4l
cnd Perimeler;

end Poly-Pack.Quadj,rck;
--€----------------o*
- Cla.cs R..tan8le

packrg€ Quad_Pack.Ret_Pack I s
type Rectangle i s new Quadrilaleral wlth nult recordi

proccduE Set_Sides (L,W: I n Floal; Shap€: out Re.t$gle);
functlon Are3 (Ri Roclangle) return Roat i s;

€nd Quad_Pack.Recr_Packi

30

peckage body Q'.4prir.R€clh.* | 6
procedurc Set_Sides (L,W: i |r Flost; Shapc out R€cranglc) t s
begtn

Shrye.Sl := L;
Shape.S3 := Shapc.Stl
Shapc.S2 := W;
Shape.S4 := ShapE.S2i

cnd Serjides;

funclion Ar€a (R Reclzlde) rltuft FIGrr I s
bcgi||

fttom R.sl . R.s:;

lnd Quid_Pack Rcd_F|ckj

- Cl&s6 Squ{re

p.ckrg€ Rect_hck.Sqr_peck I s
typ. Squae I I naw Rccraflgle wlth hull ftcordi

- pro.cdorc ScLsides (Sr lr Floar; Shape out Erurr);.nd R€cLR.lcSqr_P&k;
prck.gc body RecLPedi,Sqr_hdt l B

p.oc.dun SeLsides (S: I r Floar; Shape out Squarc) I s
bcgln

Shap€.S I := S;
Shapc.S2:= Shap€.St:
Shape.S3 := ShaFE.Sl:
ShaF.S4 := Shrpc.Sl;

.nd SeLsidcs;
cnd RecLPack.Sqr_hck;
--?.-----E-------- e'-
- A poSrarn using tll€ above ctass hienEhy
-o--------------c--
w lth RcclPack.Er_P.ck TrijackRightTri_p|ck, TcxLIO;
u3c Poiy-Pack, Tri-Paclq RiShffri_Pack, euad_paak, Rect_paclq Sqr_pack. TexrJO;
proc.duF Example i s

p.ckage fio l a n€w FloatJo(Floet); usa fioi

proccduru PrintPcrineter (Shapq in Folygoo'Clsrs) L
b.gln

newJine;
pu(*Th€ p€.imeE. of this shrF is .);
pu(Perimcldshapc), f 3,O) ;
ncw_line(2).

.nd hintPerimet€r;

. A: Triangle;
B: Quadrilateral;
Ci Righr_Triengl€;
D: Recralgl€;
E Square;

3 l

begln
Sct_S jdcs(5.(),7.0,3.0.A):
Sct_R)$ on(0.0,t .5.A):
Set_Sidcs(6.t ,8):
Set_Posi0on(_2.0,45,8) ;
Pri nrperimctc(A);
Prinrpcrimcrc(E)i
pur('Thc rrca ol thc squ.rc ix ')l
put(Arci(E).1.3,0);

€nd Examplei

This example program would have the following as its outpur

The perimeter of the shape is 15.000

The peri meter of the shape is Z7 ,?N

The area of the square is 46.24O

, . In, summary. many enhancements have been added to Ada 95. These additions have
::?:gl:i.1"^!:.:! lg the forcfront of prosrammins languages. Ada e5 has';;;n expanded and
::T.,lit-.-::,:9Y""1 llny.modem programming issues, such as objecForiented prograirming, andyers.lr rerarnsrne secuntyand resdability of Ada 93. onceagainAda has prorlen'itselfto bl oneor tne maJor prcgramming languages of yesterday, today, and iomonow.

Computer Science 495
Object-Oriented programming

FaIl 1995

Meeting Time and Place: TR 8:00 - 9:20
VZj.l824

Professor: Herbert L. Dershem
Ofhce: WVF 220
Phone: 7508
Mailbox; Usemame,,DERSHEM.

Prercquisitesr CSCI 286 and permission of the instructor

Objectives: For the student to
l. Understand the principles of tho object-oriented modcl
2. Design classes using an object_oriented language
3. Be able to critically evaluaie the object_oriented model

Approach:.This course will engage the students with the fundamentals of the object-oriented par_
adlgm._It will be an analytiaal and cvaluative approach. Three languages, C++, SmaUtalk, and Ada
95,-will be used to imprement this paradigm. stuaenr wrtt aesigi exiensive ciass tioraries for use
in the Hope College Computer Science curriculum. They will also be required to do outside read_
ings and make presentations about aspects of objectoriinted computing.

Textbook: An Introduction io Object-Oriented prograriming by Timothy Budd

Exams:There will be a take-home midterm exam.

Programming Exercisest There will be a programming exercise assigned in each of the three lan_
guages, C+r, Arla 95, and Smalltalk.

Project Teams will complete class librades for the major class project which will be due at the
end of the semester. These will be implemented using C++.

R€portst Each student will prepare and deliver a report on a topic related to object_oriented com_
puting. The report will require the reading of at least ono paper on tho topic. These repons are ro
be at least one-half hour in length and will be presented during the last thrco we€ks of the semester.

Grading:The grading criteria will be as follows:
Midterm Exam 20qo
ProgrammingExercises 2OVo
Class Project 4OCo
Presentation 20Vo

CSCI 495 - Object-Oriented programming
Program Assignment 2

Implement a set class in Ada 95. This class represent a set of Ada strings. This class should imple_ment the following methods:

. Make the set empty

. Test the set for empty

. Insert a string into the set

. Remove a string from the set

. Pdnt the set, one string per line

. Test a string for inclusion in the set

You are to construct three files for this assignm€nt. Files set. ads and set. adb will contain
1:

rl""in""t:i
""9.

b$y. of the package reprcr"nting tt
"
ct^r. tn

"Jaiiiin-,-yoi
are to w.ite a ntetest.set . abd which_will.be a main pro$am to test your implementation ii sets. your _ainprogram must do the following:

. Read- a sequence of strings from the fle testinsert . dat and place the strings into a setwhich is initially empty. If a duplicate string is read, a mes8age sfroijtJle pnnt"o af"rting tt
"user that the string is a duplicate and the program should not-atternpt to ini"r, ,,.. Next a sequence of strings is read from the file cesErernove. aai. facfr of *rese strings isremoved from the set as it is read. If a string is read which is not in th" s"t,

"
-"rrug" to mateffect must be printed and the program wilinot

"n"rnp,
to ,"^ou" tt

"
,trin*. Arrer both hles arc completely read, the final set will b€ prinred

I:.main
program should d€clare a singlc object of class set and process that set by calling appro_pflate procedures and functions.

Attach your three files to an email message and scnd to ,dershen" befole 23:59 on october 5,lvvJ.

Chapter X
The Object-Oriented Model in Ada 95

The Ada 95 revision of the Ada programming language provides comPlete and extensive ob-
ject-oriented capabilities. In this chtpter, these capabilities are described and illustrated'

X.l Overview

One of the major objcctives of the Ada 95 revision was to include a full imPlementation of the

obiect-orienred rnodel. lda 83 included some featues of the model such as encapsulation through

oui t *"i. tto"
"*r"n.ion

of operations through the use of derived tyPes' and static polymorphism

if"offn ouiiio"aine -d generics. Those features commonly associated with the object-oriented

modeithat were noifound in Ada83 *ere typeextension through thc addition of data components'

Jvnarnic potvmootrism throughout the subclass structure, and visibility control that Permits sepa-

,.iretv
"n"lapioturei "tasses

to iinre non-public data and oporations. All of these features have been

inclided in Ada 95.
AnothelobjectiveofthgAda95revisionwastomaintainthefundamentalapProachand.struc-

tor"oi *t" eO" t*guage. This objective has had a major impact on- the implementation of thc ob-

i""i-o,i"ntJ o"r"ais.-in Ada 95: C1uss inheritancc is implemented as a natural extension of

ii*i"J$* *lrif"incapsulation and visibility issues are handled under the package sffucture of

Ada 83._t-t'-","-"ining'".tionsofthischapterdescribcthecompleleimplementatio.nofthoobject-ori-

ented paradigm in-Ada 95. In doing thi;, we do not distinguish the newly added features from those

that were present Prior to Ada 95.

X.2 Classes and Methods

In Ada, there is no distilction between a typ€ and a class This unifies the two concepts and

makes the object-oriented model a natural extension of the Ada implementation of the Ada model.

It
" "turrit "

9p", ttt"n ar object is any instantiation of that typ€. Therefore, objects cante
created in two funiimental ways: by de.claring a variable and by dynarnically allocating an object
of the eivcn tvDe by means of i new statement. The objelt created by vadable declaration will be

refert i to Uv ttre nulne of the variable. Thc dynamically-allocated object is referred to by means

oI a pomrer.
fh" d"t"

"o,npon"nt
of a class are defingd as record components. Since the class is therefore

a record type, each object of that class contains every data element of the class Consider, for ex-

amDle. the class Fraccion defined by
tl4)e Fraction is record

numerator : ancelter;
denomiltator : positave;

enal record;
This is a standad record type definition in Ad4 but it also serves to define a class Objects of t]?e

Fnction can now be instantiated in the following ways:

- 1 ,

f : F r a c t i o n ;
fp : access F rac t i on ;

1o = ,r"" Fraci: ion;
ln thi i case, both f and tp.aIl ' are objects ofclass Fraction --

tllettroas of an laa class are procedures or functions ihat are declared in the same compilation

r"ii* iir" i"ot aiiruration for th; class and have Parameters and/or a return value belonging to the

class. Unliie other languages such as C++ and Smalltalk where methocls belong to an oDlecl syn-

;;il|;:;il;;t 6elo"ng to a class There is no object specifiedas-the receiver ofthe message

."rii"" ii,i'n..irr"o,
"i'J

rhere-fore. there is no special synlax used to differenliate a receiving ob,ecl
'-"c:;;""t: ; ; ;".nf

i larion unitconuining ihe definrt ion ofaclass is a package The standard

r i . iUir i iv.oniiof . ."f tari isms ofthe package (h-erelore apply permit l ing the complele specif icatron

of e class srructure to be hidden lhrough use of lhe pri vaLe spec' l lcal lon
"' 'F-;;;pI",

;" ,pecification of a package definrng a few usefu I functrons for the Frac t i on

"f*.
unJ p-iiUiting direct access to the dati of the cliss is shown in Figure X l The procedure

"-. i . .

-f ,"". i" i
and rhe function asFloat a.e methods ofclass Ftaction since they both

;";;"-". a-;;;;;";".t. unlittty ut" a""rured in the same package as Frac t ion The func-

,ion rr-"r..-it".li"n is a method of Flaction because it has a Fractton retum value The

overloaded operator ' is also a method of Fractlon-'"'o;;;-,#;;il
p"ssibility ofthe Ada specification ofmethods is thar on"e funcrion or proce-

d"r"";"igh,;;;;"",:h;ioi tior" tt'un on" ituss This will only be possible if more than one class

is defined in the same pacKage as a procedure or function which includes both classes among its

i^i"r""Lr. -Jr"rr" iat'e.-standaid ob.lecForienied convention.keePs the number of classes de-

ilared in each package at one' so this situation wil l not usually arrse''-'i
J""iJ ui

"o"l
that the encapsulation unit (in our case FracEioniack) and the class

("t;";i";i;; se-|arat; entities ind have distinct namcs A method call in Ada is no different

from anv other iunctlon or procecure call For example' three of the four methods of class Frac -

tion would be called in the following statement

P! in t -Frac t ion (f1 + Make-Frac t ion (5 ' 17)) ;

- 2 -

Figure X.l Definition of class Fraction

package FracEiorllack is
t:4)e Fraction is Private;
function uake-Fraction (num. den : i-n inlagef,) return Flaclion;
procedule Prin!-Fraction{F : in Flaction) t
function as!'l"oats(f : in Fractio$) letuln floati
fuict ion '* ' (f1, f2 : in Flacl ion) letsurn Fracl ion;
Fracti.orLErrot : exception;

t]4)e Fracli,on is record
nunrelator : j.ategef;
tlenoninalor ! intege!,

enal reeordl;
endl Fraction-Iack;

package boaly Fractioniack is
gackag€ Int-Io is new ltb€gor-Io { inE€Ee! } , uae trtrE-Ioi

funclion Make-Fraction (num' den : in inleger) leturn Fraction is

f : ! ' r a c b i o n i
begin

i f a l e n > 0 t h e n
f,nun€rator := num;
f. denoninaEo! := aen,

e l s i f a e n < 0 t h e n
f,.nr8r€ralor := -nr:m,
f. de[oldnator ;= -den,

efae
raiEc Flact lotL-Erlol t

end l f ;
returd f,

€nd uak€-F acEi,on;

proc€tlure Plin!-FracEion (f : in Flactlon) iE
begin

put(f .nul lerato!,5);
p u r (' / ") t
pul (f,. denomii'nato!,5) t

end Print-Fracts:ioni

futtcclon asPloaE(f : ia Fraction) leturn float i6
b€gin

return floa! (f ' numerator) / float { f. aleErordlnato!) ,
endl asFloa!;

functlon '*'(f1 : in Fractlon, f2 : ln Flactlon) retul.n Fraction i6

result : Fraction:= { f1 . ntltoelato!* f2 . outneralo!,
f1. dlendrinatolrf2 . alenoninator) t

begin
retsurn resultt

€nal Flactionl)ack;

- 3 -

X,3 Inheritance

X.3.1 Derived Tlpes and Type Extension

A limited form of inheritance is available through the use ofderived types' The class of the de-

riuJwpi mav th.n inherir the methods of irs parent class, ovenide them. or add new merhods nor

oreseniin the'parent type. Figure X 2 contains an example that i l luslrales all ol lhese
'- -1"

it ii
"^rinpr.,

de clasigunan is derived from class Mammal. The Hunan class acrually

includes four methods. The procedure blood is inherited from Mammal and does not apPear ln the

definition of Human. Procedures speak and give-name override the procedures of lhe same

names in ua *"f. function get-Iegs is amethodthat is not inherited at all from MaNnal but

is defined for the first time in class Human'
The overridden methods ftom Manmal are still inherited by Human' but they can only De

called by typo-casting a Human into a Mallunal Consider the following:

h : Human;

sDeak(h) ; -- thls cal-Is speak from Human
sleax iuanrmar (h)); -- this call-s speak fron Manma1

Y-ou will notice that the give-name procedurc for class Human actually calls the Mammal

give-oame by tyPe-casting its Human palameter to class Mamnal-
VislUitity is'atid an important consideiation here, If Ma$inal had been a p!ivate type, then

gurnan worila not trave had access to the component namcs This issue can be addressed through

tho use of child units as we will see in Section X 4'
".'

e-f,tt"ugiirft"
"t" "f

derived types for inheritance Permits extensionof the,methods' this form

ot intr*tarice is timited by having no capability for exiendrng the dala of the class by adding to its

,""oiJ,iiu"tur". fn o.der io makJthis eitension of the data of a class possible, Ada introduces the

tagged type.

, 4 -

Figure X.2

package Stannal-Pack is
Cype I'Iaxmal is record

, . " r n " , g g 3 i n g (1 . . 2 0) ;
legs : Natural := 0;

end recordt

procedure blood(fl : in Mannal);
procedure speak(m : in Mannal) t
irocedure give-jnane ($: in out Masmal; enarae I string);

end. I-fanmal-tack

packaEe Eunaq-Pack is

tl4)e Huma! is new ![a[una]-;

procedure speak (h . in nunan);
iunccion ge!-legs (h : in tlulnan) rebura Natural;
procedure give-lrane (h : in ouE llunan; tnnane I string);

end HumatLPack;

package boEf EumaD-Pack is
procedure speak(h : iE Huna!) is
begin

put-1ine {h.rrane & "says 'hi" ')t

end Epeak;

f,unction get-1egg (h : in l{uman) return Natural is
begin

regurn h.legE;
end get-ldg€;
pro."dut" glve-nane (h : 1!I out Hrman; rnnatne : String) is
begin

give-nane (Maeal (h) ' rnnane) ;
h .1 -egs := 2 ;

end give-name;
end Human-Pack;

X.3.2 Tagged TlPes

Themaiorl imitationofderivedtypeswithrcspecttotheobject-orientedinheritancemodeliS
the aooareni inabilitv to extend the data of a class. Forexample, suppose we wish to include in the

n,r.ll.tass ttrat *as defived ffom Mar*nal, an additional data field called IQ of type Natural .

This rs not possible through lhe use of the derived Iype fealure'- -
eau i n " i ua . . r t t " . upa6r l i t y o l ex tend ing theda lao lade r i ved typebyadd ingnewda tae lemen t :

bevond those present in the corresponding-base tyPe This is done by dec lanng the base type to be

tagged. For eximple. to accompllsh our goal of adding a data componenl 1Q to Human' we coulo

.leclare the two classes as toi lows:

t]T)e Manmal is tagged record
name : S t r i ng (1 . . 10) ;
l eqs : Na tu ra l := 0 ;

end record;

t)4)e Human is new Manunal wiLh lecord

IO : NaLu la l ;
end record;

These declarations indicate that type Human inherits both of the data components of Mammrl

(name and legs)and adds one new component' IQ
"'*iJ*...#.i.""an be applied from the derived type to irs tagged parent since it simply re-

outr"J ifr'u, ,ita .u.piut componenrc be dropped Convorsion from tagged parent to derived lype re-

ilil ;;; ,tr;;eI;i;nal c6mponents be ipecified, however' consider the following example

i'ilustrating conversion in both directions:

rn1
ht-
m2
h2

m2
b2

Manma1 ("manrmalname", 2) t
Hunan ("Humannane" ' 2 , I 24) i
Marnma 1 ;
Hunan;

= Mar.mral (h1) ;
= (rn1 w i th IQ=>30) ;

The conversion from h1 to m2 is standard type conversion with n2 taking the Manunal subset

"f
d;;"J;;i;;; lri. Th" connersion from m1 to trz requires the definition ofall components

;i";;"ii'il ;;";s but not in the base class which is the source of the conversion
"'''fn" i"ri""il"" Jsuuaasse. tttrougtt ttte use of ragged types can be carried out to multiple lev-

els.Forexample suppose we-have.a new clast tti lt l:]l i lt:"d:rived
asa subclass fromllu-

man. The class sEudent wll l add some data components sucn as scnoo_L crru

v!"t-i"-t"rt"ol. The class student is then declared by:

tvoe Student is new tluman wiLh record

s c h o o l : s t r i n g (1 ' 2 0) '
yea r - i n -schoo l : Pos iL i ve ;

end record;

The data belonging to each of the three classes is illustrated by Figurc X 3 Each ncw d€rived type

, 6 -

may, of course, provide additional methods as well as additional datA through the normal dedved

tvDe facilitv.-' '
Sp".iot'.on"ia..ution is Siven to tagged types when they are private types as weII' As usual'

private tagged types have their components hidden from extemal units-' It is requircd, how-

iver, that all types derived from a private tagged type be privateas well In the above MaJn-
rnal /ffumanT student example, Mammal could have been de'lared as a private tagged
type as follows:

cl.pe Mammal is tagged Private;

nri.'"a"
tl'pe Marnmal is record

narne : S t r inq (1 . .20) ;
Legs ; Natural;

end record;

Then Human must be declared as a pdvate extension ofManunal by

b!T)e Hurnan i5 new Ma[unat with privabe;

prlvaEe
tlt)e Human is new Marnmal with record

IQ : Naeural;

: : : ' " 'o 'u

In this case, all components ofManmal are inherited by Human, so within the package where Hu-

rnan is dcfined, references to any of the compongnts ofMaNnal are valid. Therefore, inside the
package containing the definition of Human' we can wnte

h : Human;

_ " j
n . l e g s : = - L ;

and the referonce to data component legs, defined in !{arrunal, is legal' A rcference to tr as a

Marrunal, however, would noa pemit dft€ct rcference to its dala components, since the Manmal
comoonents are Drivate to the pickage in which Maqunal is dofined and ''ot accessiblo in the pack-
aee wher€ Humin is defined.bf course, this would not be the case if both Human and Marnmal
i"r" d"fin"d in th" t"" package, but this is ','ot considered good objelt-oriented practice. There-
fore, if the two classes are defined in separate packages,

Ma{unal (h) . legs := 2;

is illegal inside the package whcre Hu.lnan is defined

-7 -

Figure X,3

Manmal Human student

nane
legs
IQ
school
year-in-schooL

nalmenane
Iegs

X.3.3 VisibilitY and Child Units

The standard practice in Ada is to doclare one class per package One difficulty with this ap-

oroo"t i, ittut ln oiO"t to maintain the encapsulation associated with the object'oriented model' the

ii"* ,'fl"riJ!" a""f."d as a private tyPe. ihts means that the data ofone class is not visible to the

methods of any other class.--
a" un

"*rri-rpt"
otthis rest ction, con s ider the classes declared in the preceding section that in-

"rui"
u"^."rjg"."n, and studenL and assume that each is declared in a different package.

For example,

Dackaqe Ma$malJack is-
tyPe tcarunat- ls tagged Private;

ent Mammaliack;

wich Marunaliack; use Marunaliack;
package Humaniack is'

tgr! utt .t is new Mammal with private;

e'rJ H',.unj.ck

with MaNnal-Jack, Humaniack; use MaNnaliack' Humaniack;

package Studentiack is-
t1p! student is new Human with prj 'vaLe'

"nd
Scrrdentlra.k;

Now, since the data components of Manunal are deftned in the private section of

";;i;;;k;;;;;thod^of
ttuman can directlv access them what we need is the abilitv for

ifr!p""t"i"
"i

tfi" *Uclass to access the private s;ction of the package where its parent class is

defined.*"'Tiis
capauititv is provided in Ada by means of child units when a package is a child unit of

"..'fr"r
t"Jf"t",-i, tift"s the parenfs piivate declarations visible within the private section of the

ctrilJ oaitae.It"hictt includes lhe body of the child Package
""'ffi;ffkjg; ii d*iui"a to ut u

"t'ira
or unother through 'ts name lf the parent package has

name P, for example, namrng a pacKage P c would mak; jta chill,f^*T1:f P This naming

;;;;;";;;;;;"rii"o ouito muttipi" ievels For examples' a package name P c G would be

a child package of P c

- 8 -

Child packages are very useful forproviding the appropriate visibility for subclasses. In the ex-
amDle above. class Human could be declared in a package named
MarnmalJack - Human--pack and class student in
Mannaljack. Humaniack. student--pack. Then all member functions of class Hrman
could access name and 1egs, privaLe comPonents of Marunal that are inherited by Human.
Likewise, student could access all private elements of both Manmal and Human.

Although type extension and child packages are unrclated concepts, the first having to do with
inheritanceand the second with visibility, they are often bound together as in our Manunal/Hu
man/ student example. By always defining a subclass in a package which is a child of the pack-
age defining its parent type, we ensure that all private elements of the parent class aie visible to the
child class.

X.3.4 Abstract Tlpes

Some classes gxist only to provide a base from which other classes can inherit. Such classes
never have any objects instantiated directly, but rather exist to have de ved classes that will have
instantiations.

In Ada, this property can be enforced by making the class an abstract type. As an examPle, the
class uarnrnat, whiih was defined earlier, could have been declared as an abstract type. This can
be done by the following declaration:

C]4)e Marunat is abstracE taqged privaee;

Class Marnnal exists only so other classes can inherit data elements name and 1egs, and proce-
dures blood and give-name. No objects should ever be instantiated of type Manunal. AIso'
note that the procedure speak is not intended to be inherited' but should be redefined for each
class derived-from Manrnal. Therefore, it is not necessary to actually define sPeak in class Mam-
nal. This can be indicated by declaring the procedurc speak to itself be abstract:

procedure speak(m : in Mannal) is abstract;

The astute reade! will notica that it appears that speak would not need to be defined at all in Mam-
ma1 since it is never inherited. we will see later, however, how absfiact procedures can be useful
for dynamic binding.

Our new definition of Marnrnal as an abstract class is now found in Figure X.4.

Figure X.4 Abstract Version of Marnmal-Pack

packaqre Mat$mal-Pack i5
!)pe Mamnal j-s abstriacE tagged

procedure b loodl rn : in Ma]nn'a]) ,
pr.oceatute speak(m : in Manmal)
procedure erive-nafre (m : in out

l)4)e Mamnal is record
n a l t l e : S l x i n s (1 . . 2 0) ;
leqs : Nalura l := 0;

end Manmal-Pack

Ma$ma1; Mane : sclinq)

- 9 -

X.4 Controlled TlPes

Ada provides the ability to automatically execute code when objects of a class are created or
destroyed, similar in function to the constructor and destructor of C++. In Adq this is handied
through special procedures, Initialize and Finalize, that are defined in a built-in abstract
class called Control led. Hence, any class for which Initial ize and/or Finalj'ze are de-
fined must be a derived class of controfled., insuring lhat rnitialize will be called at ob-
ject creation and Finalize on object destruction

A third procedure, Adjust, is provided in class concrolled to facilitate the sequence of
creation and destruction that ne€ds to occur during assignment.

For any class that is derived from controlled, the procedurg rni tial i ze is called when-
ever a new object is instantiated. The Initial ize procedure of a control Led type is called
in the following situations

1 When a iariable of the typc is declared by a declaration which does not include an initial

value.
2. When a variablo is declared to be of a composite type which includes the control led

class in its definition. This inclusion may be either direct or indirect. Again, if the controlled
object or any componcnt containing it is initialized in a dc{laration, rnitial i ze will not be

called.
3. When an allocator is called by a nsw statemont for an object of the controlled class or

acompositeobiectcontainingsuchanobjoct'Again,ifaninit ialvalueisspecifiedfortheobject
in rhe i l locarion statement, rni t ialize wil l not be called.

If a concrol led class contains objects that are themselves control led' the rni cial-

izeprocedureforthecontainedobjeclsarecalledbeforetheconlainingobjects'TnitiaIj-zes
ur. ciffia. ffris

"afUng
order is illuitratcd by the three controLl-ed classes defined in Figure

iS. Wt
"n "n

oUj""t 6'i class parent is detlarcd, the Inirial i.ze for childl is called first

,in"" ,t i,
" "o*rion"nt

of parent. The Initialize for Child2 will not be called until the

ifrirJ,t""*"", ii, Initial i ze for parent where the allocator for chitd2 is exe.cuted.'-'-'it

"
ri"":.i"" procedure of a controlled class is executed at the time an object of that

"tass
c""."s to

"^ist.
i'or declarcd variablcs, this is whcn the execution block containing the decla-

t"ti* ir iilt"a. not aynamically allocated objects, it is ar the time ofdeallocation A FinaLiza-

ai." i*"i"t" it
"Jually

pto;ided to fr€e siorage that has been allocated to an obje'l that would

"-ot;"
i""]i"*"JUV ,he'nirmal deallocation of rhe objecr, such as srorage referenced by rhe ob-

iect's pointers.'-- 'a
i"Ji"i"*u-pr" of rnit ialize and Finalize is found in Figure X 6 A List class is

defined in this Figure. Note that the list includes both a head and tail pointer' Initialize sets

U"iii'p"i"i"ii"
",it

f *hile Finalj.ze frees up all of the nodes in the list before the List itself
is deallocated.

t 0 -

Figure X5
wirh Aala. Finali.zation; use Aala. Finalization;

package Test-Init is
typ€ Cbifdl is new controlletl lrith ptivate;
ts!'pe child2 is nelv Controlled l|'ilh privatet
!14)e Parent is new controlLeal nith privalet

priwate
q'pe childlptr ie accese atl cbildl t
tlpe cbildzpt! is acces6 chilal2,
tttl)e Chi.1d1 i6 new Contlolledl witb record

Data r lntegert
siblinsr : cldld:lptr;

t)4)e chj.l"d2 is new controlledl with record
Data r Integet;
Sibling r Chtldlplr;

enal recoral,
lype par€nt i6 new co4tlolled with recoral

First : atiased Cht1d1,
second : child2ptr,

endl record;

procedtule fnitj.alize{cl : in out childX,,
procealure htcialize(C2 : in out Child2);
procealule Initiallze{P : in out Farent);

enal Teat-tnitt

gackage body Test-Inlt iE
procedlure Initlalize(c1 : in out childl) i3
begin

Put- l ine ("chl1d1 Inl t la l ize') ,
c l , .Data := 1t
c l . s l b l i n s : = n u l l

etd Inlllallze;

proceiluie Initlalize(c2 : in out ChlLiU) is
begin

Put-IJine ("chi1d2 Inirialize') t
C 2 . D a ! a : = 2 ,
c2.sib1lng :- l tuU i

end Inltialize;

plocedule higlalize(P : in out Par€lrt) is
b€sin

Put-!,ine { "Paren! Initialize');
P. FirsE. stbl ing : = P.Second;
P,second := new Chi ld2,
P.second,sibl ing := P.9l ' !68'Accessi

end lllitializet
enal TeEt-Initi

- l l -

Figure X.6
with Ada . Final izaEion; use Ada. Final izat ion;

package Lis!-Pack is
tl.pe List is new conlrolled with privale;
procedu.e Aald- lo-Fron! (L : in out Lis! ; r : in Inteser);
procedule Add-Lo-Rear (L : i . oul lJ ist , I . in Integer);
fuct ion "+"(First , second i i l t L isE) reluln List ;
funct ion r :"(Firsr, Second : in List) rerurn BooLean;
procedure Pul(1, : in l , ish);

!l'pe Nodet
t)rpe NodeJlt is access Node;
!)Ee Node is tecord

Daca : In!ege!;
Nex! : Nodeitr,

end recordi
!]4)e Lis! is new conllolleil with record

Head : Node-PCr;
Tai l I NodeJlr ;

procedure Ini l ia l ize(L : in ouu Lis!) ,
procedute Adjusl(L I in ouc List) ;
procei lure Final ize(L : in ou! Lis!) ,

end l,ist-Pack

package bodY List-Pack is

procedule Ini ! ia l ize(L
begin

Pu!-t ine (" Ini . l iaI ize
L . H e a d : = n u l l i
L . T a i I : = n u l] ;

end hi l i .a l ize;

procedure Adjust(L : in oul Lis!) is
Tenp : NodeiEr := L.Heaat;

Puc-Line ("Adjusl cal led') ,
P u l (r ,) ;
L . H e a d : - n u l l ;
L . T a i l : = n u I I ;
whiLe Temp /= null loop

Add-to-Rear (tJ, TemP. Data),
Tetnp := Terip. Nex!;

elrd loopt
end Adjuec;

plocedure Final ize(L ; in oul Li6!) is
Drocedure Free is new-

Ada . UncheckeLDeallocation (Node. Node-ilr)

Temp : Noaleitr := L lleadi
save : Node--pE!;

begin
Put-Lilte ("Finalize call-eal") ;
PUE {L) ;
whiLe Teq) /= null loop

Save := TenP;

12

r in oul List) is

c a l l e d ') ,

Temp := T4p.Next ;
F r e e (s a v e) ;

enCl loop;
L . n e a d : = n u l] ;
L . T a i l : = n u l l ;

end Final ize;
end List_Pack;

X.4.2 Overriding Assignment

An assignment oporator "::' is defined in Figure X.6. When the assignment

is executed, the components of L2, Head and Tail, are copied to the corresPonding components
ofL1. This means that LL points to the same list as r,2 rather than a copy ofthe list. Usually, this
is not the copy that we want since a later change to L2 would also result in Ll being modified

Ada provides the Adjust procedure in the control led abstract class forjust this purpose
Adj ust is automatically executed during each assignment for a Controlled class. The assign-
ment ope€tion also results in a Finalize being called. The sequence of operations for the state-
ment

is as follows:
l. Finalize(Ll) is called.
2. Components of L2 are copied to L1 as in the default assignment.
3. Adjust (L1) is called

As a result of this scquence, the Adjust procedure is written under the assumPtion that the
components themselves have already been copied. Any further adjustments must be made by the
Adjust procedute.

The Adj us t procedure shown in Figure X.6 implements assignment for the L i s c class of the
preceding section, Since the two components, Head and Tai1, have already be€n copied prior to
ahe call on Adj ust, the procedure assumes that these point to the List that is on the right-hand
side of the assignment. Plocedure Adj ust. creates a copy of this list, and sets Head and Tail to
point to the appropriate places in this copy.

X.5 Polymorphism and Dynamic Binding

Polymorphism is achieved in Ada through the classwide types. These types represent all types
in a subclass hierarchy and psrmit reference to all types in the hierarchy. Classwide types also per-
mit the dynamic dispatching of a subprogram call.

X.5.1 Classwide Tlpes
Every tagged tr?e has a corresponding classwide type. The classwide type of type T is written

T, class. The type T'class permits the rcpresentation of any type in the subclass hierarchy of
T. For example, suppose tagged type T has the following subclass hierarchy:

Humfn

Then all five of the types have a conesponding classwide type. The following table indicates the
range of reprcsentation ofeach classwide type.

Classwide Tl4)e
Mammal ' c l ass
Human 'c lass
can ine ' c lass
D o g ' c l a s s
W o l f ' c l a s s

G , n o F 6 h r 6 c 6 h i o r l

Mafiuna1, Human, Canine, Dog, Wolf
Human
canine, Dogr, wol f
Dog
wo 1 f

Classwide types can only be used in certain rcstricted contexts. Variables may be declared to
be of a classwide type only if an initial value is provided in the declaration. For example,

x : Mafimal'class
would be illegal whereas
d : Dog;
x : Manmal 'c lass := d ;

is legal. This is the casg because an object ofclasswide type must always belong to one of the types
it cai represcnt. Once an objcct is bound to that type at its creation, it may not.change, Therefore,
though x above is of type Ma$mal ' c tass, its tag indicates it is a Dog and that cannot be modi-
fied once the binding takes Place.

Variables which are ofaccess type to a classwide typ€ can point to different objects and there-
fore point to objects of different tyPes at different timcs Consider the following code fragment:

t)4)e namptr is access Manmal'classi
mp : ma.nptr;

np := new Human;

;p := new Dos;

will result in np pointing to a Hunan object first and thon a Dog object'

X.5.2 Classwide Subprograms

Aclasswidesubproglamisanyprocedureorfunctionthathasformalparametersthatareofa
classwide type. The ;ctual parameters for such a subprogram may be of any of the types represent-

ed by the ciasswide tyPe or belong to the classwide type itselt
Consider the function same-species defined by

function same-species (ml, n2 : l ' lanrrna1 ' c] 'as s) return Boolean is
begin

return nl'tagt = {i2 ' tag;

Caiine

l 4 -

end same-specles;

This ftrnction is a classwide subprogram because its parameters are of classwide typs. It also intro-
duces the t'ag atkibute of an object of a tagged type. Two objects whose tags are the same belong
to the same type withir the classwide type sinca their tags identify thsir type.

The function same-species can be called with actual parameters that belong to any of the
types represented by Marmal ' class. For example, if variables are declared by

type
d

mamptr is access lvlannal'class;
dog;

h
m

= Maiunal"'class := d;
Human t
manprr;

Then all of the following calls are legal:

- . >a t r c_>PeL re r \ u , r r / . . .

.- same-species (x, h) ...

... same-species (m. alL. x) ...

The first two calls will retum false while the result of the third call depends upon the type of the
object to which n points at the time of the call.

X.53. Dynamic Dispatching
While classwide subprograns provide some degr€€ of polymorphism, another apFoach is dy-

namic dispatching, This occurs when a single call to a subprogram may be dispatched to multiple
subprograms, depending on the tags of the actual parametcrs. Classwide subprograms have formal
paramJters of classwide type! whereas dynamic dispalching utilizes actual parameters of classwide
typ€s.

An example of dynamic dispatching appears in the followilg fragment:
n : mamptr;

speak (tn. all) t

Since there are speak procadures for both Dogs and Hunans, the call to speak could actually
result in either of the two being called, depending on the tag of n . af 1 at the time speak is called.

If thore are multiple parameters of classwide type, the disPatching can be based on the combi
natiol of tags of the parameters. The reulm value of a functioo can also drive dispatching. For ex-
ample, suppose thc following two functions are defined:

function create-narmal (name:sering) regurn dog is
m : mamptr := new Dog;

begin
give-na$e (m. all. name) ;
re tu rn Dog(m.a l , l) ,

eltd create-marunal;

function create-maflnal (name: sLring) return Human is

- 1 5 -

m : namptr := new Human;
- -Gv. -n .

"
(* . .1L , name) ;

reburn Human(m.a l1) ;
end creaEe-nannal;

Then the call

m. all := cteate,nanunal (" 'Joe') i

would dispatch its call to the apPropriatc creabe-matonal' function' depending on the tag of

m. a l l .

CSCI383 Program Assignm€nt E D[e November n '1996
An Objective Look at tula

You are to implernent the frve class€s described below:

Class Date
Instance Variables: Month, Day' and Year
Instance Methods:

Set-Datc (3 natural panmeters plus lhe rcccircr)
Get-Month
Gtt-DaY

. Gct-Year
Put

Class Tiansaction (abskact)
Instance Vadablcs: Date of hansaction (Date)

Account Numbcr (Stdng(1.. l0))
Amount of Ttansaction (lvlonoy typc = 6616 g'01 digist 8)

Instance Methods:
Set-Ttansaction (3 parametirs plus the r€ccivcr)
GGLDate
GetJcct-Num
G€t-Amt
Put

Class Check
Superclass: Transaction
Instance Variables:

Check numbcr (Natural)
Peyce (Unbound€d-Stdng)

Instance Methods:
Set-Check (5 PalametErs Plus thc rceiYer)
GeLCheck-Num
Get-PaYe€
Put

Class Deposit
Supcrclass: Transaction
Instance Vadabl€s:

Branch-Code (String(1..5))
Instarce Methods;

Set-Deposit (4 panmeters plus the rec€iver)
Get-Branch-Code
Put

Class Account
lnstanceVariables: Balance(Money)

Name (Unbounded-String)

,
T.ansaction-List (linked list of all transactions)

Instance Methods Initialize (start balance at 0 and list as empty)
Finalize
Add-Transaction
Put (print all tmnsactions in list ordered by date)
Get-Balance
Cet-Name
Set-Name
Clear-Transactions (empty transaction list)

The files containing those classos along with a menu-based rest program file should be submitted

as an attachment to an email messagc by 12:00 p.m on November 2?, 1996 No late Programs
will be accepted, so turn in whatever you have by the dQadline'

cscr 383 Program Assignment 9
Merry Christmas to All

Due December 6. 1996

Santa Claus sleeps in his shop uP at the North Pole, and can only be wakened by either all nine

reindeer being back from their year long vacation on the beaches of some tropical island in the

South Pacinc, or by some elves who are having some difficulties making the toys One elf's Prot)-
lem is never sedous enough to wake uP Sant4 so, the elves visit Santa in a group of three' When

three elves are having their problems solved, any other elves wishing to visit santa must wait for

those elves to retum after Santa has solved their problems. If Santa is awakened by both three

elves and the last reindeer retuming from the topics, Santa has d€cidod that the elves can wait

until after Chdstmas, because it is more important to get his sleigh ready as soon as possible'

You are to solve this prcblem using Ada tasks. You are to creats three task types' ReindeQr' Elf,

and Santa. Define these task types and any othe! items you need in a Package callcd Task-Pack'

In your main program, you will declare a Saata task and an aray of nine Reindeer tasks ln addi-

tion, you will have in your main program a pointer to an Elf task and create a new Elf task every

time an elf has a problem. Your program will be menu driven and the menu presented to the user

will appear as follows:
Christmas Menu
l. Reindeer arrival
2. Elf has a Problem
3. Check reindeer status
4 Check Santa status
5. Elves Problems solved
6 Santa retums from Christmas delivery
7. Terminate Program and all task

When selection 1 is made, the program should prompt the user for the reindeer number (1.'9) and

keep pFompting until a valid number is entered. If the specifred reindeer has already anived, a

mesiage shoutd be printed and the menu reappear. Whcn selection 2 is made, a new elf task is cre-

atcd ;d that ctf goes to Santa with a problem. When selc.ction 3 is made, the locations of all nine

reindeer are reportcd. When selection 4 is made, Santa's status (sleeping, solviog, or delivedng) is

reporte.d and the number of elves currently waiting for problem-solving is printed. when selection

5 is made, Santa leaves the solving mode and rctums to sleeping. When sele.tion 6 is made, Santa

returns from delivering mode to sleeping. In the cas€ of selertions 5 and 6, if Santa is not in the
pertinent mode, a mossage is printed and the Menu reappea$. When selection 7 is made, the pro-

gram and all tasks are terminated.

This program is to be submitted by email by 12:00 p,m. on Decernber 6' 1996' No late programs

will be accepted, so tum in whatever you have by the deadline.

CSCI 383: Programming Languages

Fall,1996

Course Syllabus

cs

Sur

38j: Programming Ianguages - MWF 12:00-12:50,IZN 824

of programming languages. Programming language syntax Theory.of computation Control

es- Reiursion. Language extensibility. Application languages Applrcatrve Ianguages
^^.

t-oriented languages. Experience programming in Ada Prerequisite: Computer Scienca 225'

years. 1996-97.

ve,r: objectives are for the student to

l .
2.
3 .
4.

Text

Know and understand the fundamental Properties of programming languages'

Be able to effectively leam and utilize new programming languages .
Know the five major paradigms of programming languages and be able to use mem-

Be able to choose an apPropriate language for a given application'

Programming I'angul1es: Structures and Modets, 2nd Editianby Dershem and Jipping

.' Herbed L. Dershem I YN 22O 1 75O8 I dershem@cs'hope edu

: ImDerative and ConcunenvParallel language features will be illustrated by the Ada

ing ianguage. Students will program in Ada to-gain expe.rience $ith the various features

iiii
"itoG.

gxn"a in languagls of other modils including Scheme, Prolog, smalltalk' and

isire. Computer Science 225

.' There will be three exams in this class, tentatively scheduled as follows:

Exam 1 - September 27 in class
Exam 2 - October 30 in class
Final Exam - December I I at 2:00 P m

in| Criteria:

Exam l: lOVo
Exa'Il2|lOEo
Programming Exercises: 45%
Homework:157o
Final Exam; 2070

. Frequent assignments will be given, including writing progralns in tho va ous languages'

CSCI 383: Programming Languages

Fall, 1996
Course Content:

Date Textbook Readins Assignment

Aug 28 I Overview,&Iistory

4!gi9
Sep 2

LL19j-1'ryg'*
3.I Data Types

l{W I due

Sep 4 3.2 Execution Units
Program I (Ada)
Exercises 1,2 p. 48

Sep 6 3.2-3,3 Exec. Units & Control Structures

Sep 9 4.1-4.2 Data Ag$egates - Anays

Sep 1 t 4.3-4.6 Other aggregates
P.ogram I due
Program 2 (Ada)

Sep 13 5. 1-5.3 Procedural Abstraction
HW3 due
Exercises 1,2,3, p. 131

Sep 16 5.4 Parameters

Sep l8 5.6-5.7 Functions and Ovorloading
Program 2 due
Program 3 (Ada)

Sep 20 Data Abstraction/Paramoterization Lab Ex. 1-5, p. 172

Sep 23 Ada Packages and Generics

Sep 25 C tical Issues - No class

Sep 27 Exam I

Sep 30 9.1-9.5 Functional Model
Program 3 due
Program 4 (Ada)

Oct2 9.6-9.? FP

Oct 4 10.1-10.2 Scheme

Oct 9 10.3 Scheme

Oct l l 10.4 Scheme HW6 due
Ada Journal due

Oct 14 12,l - 12,2l-/|gic-Oriented Model
Program 5 (Scheme)
Program 4 due

Oct 16 12.2 A Pure Irgic Innguage

Oct l8 l3.l Prolog

Oct2l 13.2 Prolog

Oct23 13.3 kolog Program 6 (Prolog)

Oct 25 X.l Introduction to Object-Oriented Model

Oct 28 x.2 smallralk syntax

Nov I Exam 2

Nov 4 X.3 More smalltalk Progmm 7 (Smautalk)

Nov 6 Y.l Ada 95 and the Oo Model Program 6 Due

Nov 8 Y.2 More Ada 95

NoY ll Y.3 Still more Ada 95

Nov 13 Y.4 Ada 95 ad nausoum
Program 8 (Ada 95)
Program 7 due

Nov 15 17.1-17.3 DistribuledParallel Model

Nov 18 17.4-17.6 More D/P Model

Nov 20 I 8. 1- I 8.2 Concurr€nt Units in Ada

Nov 22 18.3 More Concunent Ada

Nov 25 18.4-18.5 Still more Concurrent Ada Program 9 (Ada 95)

Nov 27 18.6 Examples in Ada Program Assignment 8 due

Dec2 Review and catchup

Dec 4 Review and catchup

Dec 6 Reviow Proglam Assignment 9 due

Hooe Colleqe
Deparanerlit oJ @mpriiter Science
I{ollqnd, Mich;ig an 4 I 4 2 2'9 O O O

(6'76, 395-7510

e@pY

Dear David:

It was good to mect you in San Jose last month. Mike Jipping and I have completed the chapter
overviJw of the Third Edition of our textbook. As we discussed in San Jose, I am sending that to
you as an enclosure.

If you have any questions or ne€d any further information at this time, please let me know

March 13, 1997

David R. Dietz
PWS Publishing CompanY
20 Park Plaz,a
Boston, MA 021 16-4324

Sincerely,

Herbelt L. Dershem, Chair

Programming Languages: Structures and Models' 3rd

Edition
Herbert L' Dershem and Michael J' Jipping

Chapter I - lntroduction and Overview

This chaPter is unchanged

Chapter 2 - PreliminarY ConcePts

This chapter is unchanged

Chapter 3 - An Overview of the Imperative Model

This chapter is unchanged except for the addition of features of Ada 95

ChaPter 4 - Data Aggregates

This lhapter is unchanged except for ttre addition of features of Ada 95

Chapt€r 5' Procedural Abstraction

This chapter is unchanged except for the addition of features of Ada 95'

ChaPter 6' Data Abstraction

This chaPter is unchanged except for the addition of features of Ada 95

Chapter 7 ' An Overview of a Functional Model

This chaptor Chapter 10 of the Second Edition with no significant changes

Chapter E' Scheme: A Functional-Oriented Language

This chaPter Chapter 1 I of the Second Edition with no significant changes

Chapter 9 - ML: A Tlped Functional Language

This chapter Chapter I I of the Second Edition with no significant changes

Chapter 10 ' Prolog and the Logic-Oriented Model

ThiseliminatestheuseoftheLPlanguageandintroducestheLogic-orientedmodelthroughPro-
loe. The coverage of P'orog o g'"uti;;;"p-u;al unJi*p'ou"a ou"t tttar in chapter l3 of the sec-

on-d Edition.

Chapter ll - Smalltalk and the Object-Oriented Model
This eliminates rhe use of HOOL and intrcduces the Object_OrienM model directly throughSmalltalk.

Chapter 12 - Java: An Object-Oriented Language
This is-an entirely new chaptq, replacing the Sccond Edition's Chapter 16 on C{_+. It,s approach
is similar to that of Chapter 16.

Chapter 13 - The Object-Oriented Approech of Ada 95
This is an entl€ly new chapter.

Chapter 14 - An Overview of the Distributed Parallet Model
This chapter is unchargcd frcm Chapter 17 of thc Second Edition.

Chapter 15 - Concurrrnt Units in Ada 95
This chapter is an update of Chaptcr 18 of thc Sccond Edition with modifications to refl€ct Ada
95.

Chapter 16 - Concurrent Thrcads ln Java
This is an entircly new chapter.

