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B. Description of the Project

Statement of Work

Scope

This project will result in the redesign of two courses, programming languages and object-ori-
ented programming, so that they are based on the Ada 9X language. In addition, the project direc-
tor will revise his programming languages textbook so that it includes a chapter on Ada 9X under
the object-oriented paradigm, and will revise the use of Ada as an illustration of the imperative
and concurrent paradigms to reflect changes made in Ada 9X.

Technical Approach

Hope College is a four-year liberal arts institution with enrollment of approximately 2,700. The
college has had a computer science department since 1974. The department presently consists of
four full-time faculty members, three of whom hold Ph.D. degrees in Computer Science. The
department graduates between 10 and 15 majors each year.

Object-oriented programming is currently taught in two places in the Hope College Computer
Science curriculum, First, in the programming languages course, approximately two weeks is
devoted to the object-oriented paradigm. The languages Smalltalk and C++ are introduced in
accordance with the presentation of the topic in the textbook which is co-authored by the Project
Director [1].

The second place that object-oriented programming in found is in a topics course which is offered
following the Programming Languages course and which has the Programming Languages course
as a prerequisite. The language used in this course in the past has been C++.

The first edition of the textbook mentioned above uses Ada as a language to illustrate the impera-
tive paradigm. A second edition of this textbook has just been completed and will be published in
1994, In that edition the concurrent paradigm has been added and Ada is also used as a primary
illustration of that paradigm. In the textbook’s discussion of the object-oriented paradigm, both
editions use the languages Smalltalk and C++ as illustrations. In the second edition, a chapter is
devoted to each of these languages.

Object-Oriented programming is one of the most important and popular topics in Computer Sci-
ence today. Currently, the language of choice in most of industry and academe is C++. Ada 9X
shows the promise that it might radically change this situation by providing object-oriented capa-
bilities within a well-designed structured language.In order for this to happen, effective educatioal
materials must be produced which present the object-oriented model in the context of the Ada 9X
language.

The purpose of this project is to incorporate Ada 9X as a prototype language for the object-ori-
ented paradigm into the programming language and object-oriented programming courses. The
biggest hindrance to doing this in the near future will be the lack of textbooks which use Ada 9X



to teach the object-oriented paradigm. This project is intended to address this problem by provid-
ing a timely revision of a textbook already on the market.

Specific Tasks
Three major tasks are proposed in this project:

1. Writing a new chapter of the Dershem/Jipping textbook describing Ada 9X as it applies to the
object-oriented paradigm. This chapter will be for inclusion in the next edition of this textbook.

2. Revising the discussion of Ada in the Dershem/Jipping text in relation to the imperative and
concurrent paradigms to reflect the changes in Ada 9X.

3. Redesign the Programming Languages and Object-Oriented Programming courses at Hope
College to base them on Ada 9X.

Time Frame of Effort
July, 1994 Draft Ada 9X Object-Oriented Chapter for Dershem/Jipping textbook

August-December, 1994  Teach Programming Languages at Hope College using new chapter
Revise chapter according to the experience using it

June, 1995 Make final revision to Object-Oriented Ada 9X chapter for
submission to publisher

July, 1995 Make revisions to imperative and concurrent sections of Dershem/
Jipping textbook to reflect changes in Ada 9X and send revisions to
publisher

August-December, 1995  Teach Object-Oriented Programming course at Hope College using
Ada 9X

May, 1996 Prepare syllabus and other materials from Object-Oriented

Programming course for dissemination and final project report

Summary of Anticipated Results

This project will have two major results. The first will be a revision to the textbook Programming
Languages: Structures and Models that will result in its third edition. This revision will contain a
new chapter under the object-oriented paradigm that discusses Ada 9X as it represents that para-
digm, It will also have revisions to the treatment of Ada under the imperative and concurrent par-
adigms to reflect the changes in Ada 9X..

The Table of Contents of the Second Edition of the Dershem/Jipping textbook is given below with
annotations indicating the changes that will be made as a result of this project. Sections which



appear in bold will be modified to reflect changes in Ada found in Ada 9X. The new object-ori-
ented chapter will appear between chapters 14 and 15 as indicated in the table.

1. Overview of Programming Languages

1. Introduction and Overview

1.1 What is a programming language?

1.2 Why study programming languages?

1.3A brief history of programming languages
2. Preliminary Concepts

2.1 Syntax specification

2.2 Semantics specification

2.3 Language translation

2.4 Language design characteristics

2.5 Choice of language

1L Imperative Model

3. Overview of Imperative Model
3.1 Data types and bindings
3.2 Execution units and scope of binding
3.3 Control structures
4. Data aggregates
4.1 Data aggregate models
4.2 Arrays
4.3 Strings
4.4 Records
4.5 Files
4.6 Sets
5. Procedural Abstraction
5.1 Procedures as abstractions
5.2 Procedure definition and invocation
5.3 Procedure environment
5.4 Parameters
5.5 Value returning procedures
5.6 Overloading
5.7 Coroutines
5.8 Procedures in Ada
5.9 Exceptions
5.10 Exceptions in Ada
6. Data Abstraction
6.1 Abstract data types
6.3 Encapsulation
6.4 Parameterization
6.5 Monitors
6.6 Data abstraction in Ada
7. Example Language - C
7.1 Philosophy and approach
7.2 Information binding
7.3 Control structures



7.4 Data aggregates

7.5 Procedural abstraction

7.6 Data abstraction

7.7 Common library functions
8. Example Language - Modula-2

8.1 Philosophy and approach

8.2 Information binding

8.3 Control structures

8.4 Data aggregates

. 8.5 Procedural abstraction
8.6 Data abstraction

I11. Functional Model

9. Overview of Functional Model
9.1 Functions
9.2 Functional programming
9.3 Functional languages
9.4 FP: a pure functional language
9.5 Bvaluation of functional languages
10. Scheme - A Functional-Oriented Language
10.1 Basic components
10.2 Function definition
10.3 Examples
10.4 Comparison of Scheme to FP
11. ML - A Typed Functional Language
11.1 Features of ML
11.2 Examples
11.3 Comparison of ML to FP

IV. Logic-Oriented Model

12. Overview of Logic-Oriented Model
12.1 Introduction to logic language model
12.2 A pure logic language
12.3 Database query languages

13. Prolog - A Logic-Oriented Language
13.1 Syntax of Prolog
13.2 Non-logic model features of Prolog
13.3 Example programs in Prolog

V. Object-Oriented Model

14. Overview of Object-Oriented Model
14.1 Components of Object-Oriented Model
14.2 Properties of Object-Oriented Model
14.3 An example
14.4 Comparison with imperative model

[Chapter on Ada 9X will be added here]



15. Smalltalk - an Object-Oriented Language
15.1 Overview
15.2 Smalltalk syntax
15.3 Class hierarchy
15.4 Abstract classes
15.5 An example in Smalltalk
16. C++ - a Hybrid Object-Oriented Language
16.1 Overview
16.2 Components of C++
16.3 An example in C++

V1. Distributed/Parallel Model

17. Overview of the Distributed/Parallel Model
17.1 Process definition
17.2 Invocation of processes
17.3 Data sharing
17.4 Interprocess communication
17.5 Synchronization
18. Concurrent Units in Ada
18.1 Process definition
18.2 Process invocation
18.3 Data sharing
18.4 Interprocess communication
18.5 Synchronization
18.6 Examples in Ada
19. Occam - a Parallel Language
19.1 Process definition
19.2 Process invocation
19.3 Data sharing
19.4 Interprocess communication
19.5 Synchronization
19.6 Examples in Occam

The second result of this project will be the design of an Object-Oriented Programming course
based on Ada 9X. It is anticipated that in addition to its submision as a part of the report on this
project, a paper describing the course will be submitted to the SIGCSE Bulletin.

Proprietary Claims

The Project Director will retain proprietary rights to all modifications of the textbook, Program-
ming Languages: Structures and Models. He will include an acknowledgement to DARPA in the
book. He will have no other proprietary rights to any other material created as a part of this

project.



C. Summary of Deliverables

1. A new chapter of the Dershem/Jipping textbook on Ada 9X as an example of the Object-Ori-
ented paradigm.

2. A list of revisions to be included in the Third Edition of Dershem/Jipping textbook to reflect
changes to Ada 9X within the imperative and concurrent paradigms.

3. A syllabus and sample projects for an object-oriented programming course based on Ada 9X.
These will be submitted in the form of a paper suitable for submission to the SIGCSE Bulletin,



D. summary of Schedule and Milestones

Date

July 1994

Aug-Dec, 1994

June-July, 1995

Aug-Dec, 1995

May, 1996

Key Personnel

Activity

A rough draft of an Ada 9X object-oriented chapter for Dershem/Jipping will
be completed.

Programming language courses using the draft of the Ada 9X chapter will be
taught at Hope College (by Dershem).

Dershem will make final revisions tothe Ada 9X object-oriented chapter, revise
the imperative and concurrent model discussions of the textbook to reflect
changes in Ada 9X, and design an object-oriented course based on Ada 9X. He
will be assisted by a half-time undergraduate student who will code and test
programs and work exercises.

Dershem will teach the Object-Oriented course using Ada 9X at Hope College

Dershem will prepare final report and deliverables for this project.

Herbert L. Dershem (Curriculum Vitae in Appendix)
Effort expended: four months of full-time effort, directing all activities above

Undergraduate Assistant (to be selected during Spring Semester, 1995)
Effort expended: two months of half-time effort



E. Previous Related Work

Professor Dershem has been active in computer science curriculum development for more
than twenty years. His first activity was in the design of a course that combined the teaching of
statistics and computer science [1]. His work on that project was supported by a grant from the
National Science Foundation and resulted in the publication of a laboratory manual for use in
such a course [2].

Professor Dershem was also funded by NSF for the development of a modular approach to
the teaching of introductory computer science [3]. As a part of this project, two modules on prob-
lem solving were produced [4] [5].

Professor Dershem has taught, worked with, and written about Ada extensively. Evidence of
this is the textbook referenced previously [7] and its second edition [8] which is due for publica-
tion in 1994. In addition, the Project Director, while on leave during 1993-94 at the United States
Air Force Academy, will teach a course on object-oriented programming using Ada 9X during the
Spring 1994 semester. This will provide him with background information to assist in the initia-
tion of this project.

In addition, Professor Dershem is presently completing work on a DARPA funded project to
redesign the data structures course to use the Ada language. This project will be completed in
June, 1994,

Professor Dershem is also the Principal Investigator for a Research Experiences for Under-
graduates program funded by the National Science Foundation. This provides funds for six under-
graduates to do research in each of three summers, 1992, 1993, and 1994.

Professor Dershem has also been active in curriculum development and in the activities of the
Special Interest Group on Computer Science Education (SIGCSE) of the ACM. He served s pro-
gram chair of the 1988 SIGCSE Symposium and edited the proceedings of that symposium [6].

This project will utilize the SUN network of the Hope College Computer Science Depart-
ment. This network is describe in detail in the Appendix. Presently we run Meridian Ada on that
network. The version of Ada 9X that we use for the proposed projects will depend upon the avail-
ability of compilers at the time.

Bibliography

[1] Dershem, H.L., A course on computing and statistics for social science, Proceedings of 1972
Conference on Computers in the Undergraduate Curricula, Atlanta, GA, 1972.
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13(1):177-181, Feb, 1981.

[4] Dershem, H.L., UMAP Module 477: Computer Problem Solving, Birkhauser Boston, Inc.,
1981.

[5] Dershem, H.L., UMAP Module 478: Iteration and Computer Problem Solving, Birkhauser
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[6] Dershem, H.L. (ed.), Proceedings of the Nineteenth SIGCSE Technical Symposium, Associa-
tion for Computing Machinery, 1988.

[7] Dershem, H.L. and Jipping, M.J., Programming Languages: Models and Structures, Wad-
sworth Publishing Company, 1990.

[8] Dershem, H.L. and Jipping, M.J., Programming Languages: Models and Structures, Second
Edition, PWS Kent Publishing Co., 1994. [to appear]
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F. Cost Breakdown

Task 1: Write a new chapter for the Third Edition of the Dershem/Jipping textbook describing
Ada 9X as it applies to the object-oriented paradigm.

Two months full-time effort by project director (July, 1994 and June 1995)
Offering of course using materials (August-December, 1995) - no project cost
One month half-time assistance by undergraduate student (June 1995)

Total Cost: $17,034

Task 2: Revise text in Dershem/Jipping text in relation to imperative and concurrent paradigm to
reflect changes in Ada 9X

Drafted by project director during offering of course (August-December, 1995) - no project cost
One month full-time effort by project director (July, 1995)
One month half-time assistance by undergraduate student (July, 1995)

Total Cost: $9,090
Task 3: Redesign of Programming Languages and Object-Oriented Programming courses at Hope
College to base them on Ada 9X.

Course design and offering by project director (August-December, 1995) - no project cost
One month full-time effort by project director to write up course and project results (May, 1996)

Total Cost: $8,340
Budget Summary
July, 1994 Project Director’s Salary (1/9 academic year salary) $ 6,620
Project Director’s Benefits (20% of salary) $1,324
June-July, 1995 Project Director’s Salary (2/9 academic year salary) $13,900
Project Director’s Benefits (20% of salary) $2,780
Half-time student assistant stipend $ 1,500
May, 1996 Project Director’s Salary (1/9 academic year salary) $ 6,950
Project Director’s Benefits (20% of salary) $ 1,390
Total Budget $34,464
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Appendix - Description of Hope College Computer Networks

Computer Science Department Sun Network

Machine/Part Peripherals

Sun 4/360 32 MB memory, 2.0 GB disk, 14,400 baud modem

Sun 4/470 32 MB memory, 669 MB disk

(2) Sun 4/40s 12/16 MB memory, SO0MB disk, 3.5” floppy

(6) Sun 4/60s 16 MB memory 500MB disk, 3.5” floppy, GX graphics
' coprocessor

(3) Sun 4/65s 16 MB memory, 5S00MB disk, 3.5” floppy

(2) Sun SPARCstation 10s 32 MB memory, S00MB disk, 3.5” floppy

(1) Sun SPARCstation 10 32 MB memory, 1.0 GB disk, 3.5” floppy

(32) INMOS Transputers Parallel processing units housed in Sun 4/470

Lab software includes standard distributed SunOS/Unix software. This includes a distribution of
Sun’s OpenWindows, which is a version of the X windowing system. In addition, several pack-
ages have been purchased from various vendors including FrameMaker, SunGKS, SunPHIGS,
SunLink DNI DECnet support software, Centerline CodeCenter and ObjectCenter, SunPC, and
Adobe Transcript. INMOS languages and development software are available for the Transputers.
The lab uses several public domain software packages including TEX, EMACS, and DECnet util-
ities.

The lab’s software and hardware provide access to the Internet through a college-owned Merit
routing equipment.

VAX Network

The college owns two VAX 4000 systems which serve the entire campus community for aca-
demic, administrative, and library applications. This system is accessible from eleven locations
on campus which have a total of 144 stations that are publicly available for student access. In
addition, there are many other terminals available in offices and laboratories across the campus.

A wide selection of software is available on the VAX systems including the Verdix VADS system
of Ada software development.

PC Network

There is a Novell local area network in the building complex where this project will be conducted
that connects 49 486 systems through a common file server. Twenty-eight of these systems are
located in a computer classroom that includes one HP Laserjet III printer, and a projection system.

13



Hope College
Department of Computer Science
Holland, Michigan 49422-9000

(616) 395-7510

May 13, 1997

COPY

NCTAMS-LANT

9456 Fourth Avenue, Suite 200
Bldg V53, N9/N7

Naval Air Station

Norfolk, VA 23511-2199

Dear Mike,

Enclosed you will find the Final Report for Air Force Contract# F29601-94-K-0033, Curriculum
and Textbook Development Using Ada 9X for the Teaching of Object-Oriented Concepts. A com-
plete set of deliverables is also enclosed.

It has been a pleasure working with you and I greatly appreciate the funding provided under this
contract. Please let me know if you need any further information.

Sincerely,

Herbert L. Dershem, Chair



Final Report

Air Force Contract # F29601-94-K-0033
Curriculum and Textbook Development Using Ada 9X for the Teaching of

Object-Oriented Concepts

Herbert L. Dershem
Department of Computer Science
Hope College
Holland, MI 49422-9000

May 13, 1997

Summary of Activities

The table below indicates the activities that were carried out with support from this contract:

July, 1995

August-December,
1995

June-July, 1996

August-December,
1996

May, 1997

Reviewed the second edition of the textbook, Programming Languages:
Structures and Models by Dershem and Jipping to update all Ada refer-
ences to reflect the changes made in Ada 95.

Conducted thorough review of features of Ada 95 with assistance from
undergraduate students Andrew Van Pernis and Manuel Calderon. These
students were supported by a National Science Foundation grant under
the Research Experiences for Undergraduates program (CDA 9423943)
This study included a thorough analysis of the object-oriented features
of Ada 95. The final report of this study is included as a deliverable.

Designed a course in Object-Oriented programming with a significant
portion devoted to Ada 95.

Taught the course CSCI 495, Object-Oriented Programming at Hope
College using Ada 95. The syllabus for this course is included as a deliv-
erable.

Drafted a new Chapter for the proposed Third Edition of Programming
Languages: Structures and Models. This chapter is included as a deliver-
able.

Taught the course CSCI 383, Programming Languages at Hope College
using the newly drafted Object-Oriented Ada 95 chapter.

Prepare materials for final report



List of deliverables

1. A Critical Evaluation of the Enhancements of Ada 95 by Andrew Van Pernis and Manuel Cal-
deron

2. Syllabus for CSCI 495, Object-Oriented Programming

3. Proposed Chapter of Programming Languages: Structures and Models, Third Edition, The
Object-Oriented Model in Ada 95.

4. Syllabus for CSCI 383, Programming Languages

5. Chapter outline for proposed Third Edition of Programming Languages: Structures and Mod-
els



A Critical Evaluation of the
Enhancements of Ada 95

by
Andrew Pieter Van Pernis
Manuel Calderon

Hope College Computer Science
Summer Research 1995
Prof. Herb Dershem



Table of Contents

Tasking
Protected Types
Protected Type- Entries
Requeue Statement
Task Scheduling
Asynchronous Transfer of Control
Predefined Library- /O
Tasking Example

Generics
Generics- Unconstrained
Formal Generic Package Parameters
Abstract Data Types and Subprograms
Aliased Types
Generics Example

Strings
Strings Example

Object-Oriented Programming
Tagged Types
Class Wide Programming
Dynamic Type Selection
Public Children
Private Children
Generic Children
Object-Oriented Example

oSN b W

10
11
13
14

16
16

22
22
23
24
i)
26
26
28



Many new features have been added to Ada 95 to enhance and expand the Ada
programming language. These features affect four main categories of programming: tasking,
generics, string manipulation, and object-oriented. All of the new features are improvements of
Ada, but some are more useful then others. Furthermore, not all of the features are exactly what
they appear to be upon a cursory examination. We will examine these new features of Ada 95,
comment on their usefulness, and list any difficulties in using these new features. We will also
examine how these new features apply to tasking, generics, string manipulation and object-
oriented programming.

TASKING

Tasking is one of the more useful features of Ada 83. It permitted different processes to
run concurrently. Ada 95 includes several new features that make tasking more useful. These
new features are explained below followed by an example that uses most of them.

The features:

1. Protected Types

2. Protected Types - Entries

3. Requeue Statement

4. Task Scheduling

5. Asynchronous Transfer of Control
6. Predefined Library - /0

Protected Types

In order to simplify tasking, Ada 95 has included the protected type feature. A protected
type is a type that contains a private part, which is used to pass information between tasks or allow
several tasks to share information, depending on the protected type's subprograms. Attached to
the protected type are subprograms that access and manipulate the private data. Since these
subprograms are executed in a mutually exclusive manner, the integrity of the data stored in the
protected type is insured. Thus, protected types help to eliminate the need for additional tasks to
control the passing of information between various tasks.

A protected type can be defined in two ways. First a protected variable can simply be
created.

protected Flag is
procedure Get (Value: Item);
procedure Put (Value: Item);
private
Data: Item;
end Flag;
protected body Flagis
-- Procedure and function bodies for the variable Flag
end Flag;

Second, an actual type can be defined as protected, and then variables of that type can be declared.



protected type Flag Typeis
—- Asin the above example

Flag: Flag_Type;

The subprograms of the protected type are then accessed through the dot notation found
throughout Ada.

Flag.Get (X):
Flag.Put (Y):

It is important to note that since functions in Ada have read-only access to the protected type, any
number of tasks may execute functions on a protected type at the same time. Since procedures
have the ability to change the values stored in the protected type, only one task may execute a
procedure on a protected type at any given time, and no functions may access the protected type
while that procedure executes.

Protected types are an incredibly useful feature when using tasks. Not only can protected
types be used to create semaphores and flags, but they can also be used to prevent race conditions
on data shared between tasks. Furthermore, since the actual value of the protected type remains
private and can only be accessed through the defined subprograms, the abstraction of a semaphore
or flag is maintained.

Protected Types - Entries

Entries are procedures or functions belonging to protected types that have a certain
condition, called the barrier. When an entry is called, the condition is evaluated. If the conditionis
true, then the entry body executes. If it is false, the entry call is queued until its condition becomes
true. When an entry is queued, the task that called it halts. Therefore entry calls to the same
protected element must be made from different tasks to have any impact.

In the following example, the entry is called "win_or_lose". When this entry is called, the
variable "points" must be equal to "limit" or "-limit" for the body to begin execution. At the
beginning of the program, this will not be true. Task one calls the entry "win_or_lose" at the
beginning. Therefore it will be queued. During the execution of other tasks, the "barrier" will
become true and "win_or_lose" will eventually execute. When the person playing this game gets
"limit" or "-limit" points, a win or a loss is reported.

The example:

package for_game is

protected type gameis
entry win_or_lose:

end game;
end for_game;

package body for_gameis

protected body game is



entry win_or_lose when ((points = limit) or (points = -limit)) is
- will get executed if the barrier is broken
-- it will display a message depending on points.
begin
if points = limit then
put_line(" YOU WON !!!! ");
else
put_line(" YOU LOST 72?2 ");
end if;
end win_or_lose;

end game:
end for_game;

Example of a call:

task one;
task bodyoneis
begin
my_game.win_or_lose; -- this call will be queued, until the barrier
end one; -- becomes true.

Requeue Statement

When a requeue statement is executed, for example "requeue reset", entry "reset" is placed
in the entry queue.

entry signal when trueis  -- barrier is always true
begin

;‘.e.queue reset; -- WHERE THE REQUEUE STATEMENT IS USED.
end sig.n'a.l;

In the preceding code "reset" will be placed in the entry queue. When entry "signal"
finishes executing, then all executable entries waiting in the queue will be executed. Following
these, "reset" will execute if its barrier condition is true. A more complete example of requeue is
given later.

Task Schedulin

Ada 95 expands the capability of tasks by allowing task scheduling, giving certain tasks are
given priority over other tasks. Thus, when tasks entera queue for a processor or other resource,
tasks with a higher priority are given preference over those with lower priorities.

Task scheduling is added to any tasking program with a single statement in the
specification of each task.

task Example is
--Entries for task example

'p-llagma Priority (Value);
end Example;



The pragma priority statement assigns the task a priority between 0 and 30, with 30 as the highest
priority, and O the lowest. When tasks are competing for a resource, the task with the highest
priority will gain control of the resource first. If several tasks with the same priority are waiting
for the resource they will be handled using a FIFO queue.

Task scheduling, once understood, is easy to implement and allows for greater control over
the order of execution of tasks. Furthermore, including task scheduling in Ada 95 does not
invalidate any Ada 83 code, since tasks default to the original FIFO queue method of scheduling if
they are not assigned priorities. A further extension of task scheduling is interrupt priorities,

which can be used when tasks need to immediately gain control of resources, as in an abort
situation.

Asvnchronous Transfer of Control
The statement

select -- asynchronous transfer of control.
delayi2.0; = mmmeemeemeeecsemectaiinneaee

then abort
end select;

seems to "not" be working. GNAT documentation says it is not yet implemented. It supposed to
work so that the statements between the "then abort" and the "end select" are executed first. If
they take longer to execute than the time specified after the "delay”, execution is interrupted, and
instead, the statements between the "delay" and the "then abort" are executed. When the
statements take less time than specified in the delay, GNAT works fine. But, when execution is
interrupted because time elapsed, a "segmentation fault" is reported.

Predefined Library - I/O

The Text_IOlibrary of Ada95 remains virtually unchanged from that of Ada 83. Several
useful new features have been added to it however, such as Flush, Look_Ahead, and
Get_Immediate. Furthermore, in order to support programs written under Ada 83, no previously
existing functions were removed or changed in any significant fashion.

The procedure Flush immediately flushes a buffer to a file, or to the current outpul
depending on whether a file was specified. The Flush procedure is also important when working
with tasks, since most implementations will have the tasks output to a buffer that will then be sent
to the current output file when the task is completed, and not before, making debugging difficult.
Flush simplifies the debugging process by forcing the output of a task to be immediately sent to
the output file instead of remaining in the buffer until the task finishes executing. LLook_Ahead is a
procedure that allows the user to determine the next character of a file and input without
consuming it. The procedure Get_Immediate reads the next character from a file or the current
input file if one is available, and does not skip any line or page terminators like the standard get
procedure., Other additions include Modular_IO and Decimal_lO as subpackages, and the ability
to use the functions Set_Error, Standard_Error, and Current_Error for error files. In general, the
predefined library Text_IO remains unchanged between Ada 83 and Ada 95, only a few, helpful
features have been added to it.

An Example of Tasking
The following example was taken from the Ada 95 rationale and was modified a little so

that incorporates most of the Ada 95 features of tasking.



package [or_event is
protected type cvenlis
entry wail;
entry signal;
private
entry reset;
occurred: boolean:= false;
end cvent;
end for_event,

package body for_cventis
protected body cventis

entry wait when occurred i s
begin
put_line("wait is exccuted");
flush;
end wait;

entry signal when trueis  -- barrier is always true
begin
put_line(" Signal is executed. ");
flush;
i f wait'count > 0 then
oceurred ;= true;

delay(1.0); -- 10 make sure the waits are before requeue.
requeue reset; -- WERE THE REQUEUE STATEMENT IS USED.
end if;

end signal;

entry reset when wait'count=01is
begin
put_line(" Reset is executed. ");
flush;
occurred:= false;
end reset;

end event;
end for_event;

procedure mainl is
my_event: event;

task type one;

task body oncis
pragma Priority (30);

begin



put_line (" First wait");
flush;
my_evenl wail;
put_line (" Sccond wail ")
flush;
my_event.wail;

end onc;

task two;
task body lwois
pragma Priority (29);
begin
delay(1.0);
pul_line(" First signal "),
flush:
my_event.signal;
delay(1.0);
put_line(" Second Signal"):
flush;
my_event.signal;
end two;

Narrav(1.3) of one;

begin
null;
end mainl;

Here is what happens when the preceding program executes:

First, the 3 "first waits" are queued (3, because there are 3 tasks of type "one"). Then the "first
signal" gets called, this requeues "reset". Thus, "reset" is queued behind the 3 "waits". The 3
"waits" are now executed, and the "reset" follows. Then the same thing happens again with the
"second waits" and "second signals".

The tasking features used in this example are:

Protected types:
Type "Event" is a protected type.

Protected types - Entries: :
"Wait", "Signal”, and "reset" are entries.

Requeue Statement:
"requeue reset" is in entry "signal".

Task Scheduling: :
Task type "one" has a higher priority than task "two" therefore the tasks of the array will start
execution to ensure that the 3 "first waits" are queued before the "signal" in task two is called.

This enables the use of the requeue statement.



Predefined Library - /O

"flush" is from the library I/0. Without "flush" we may be getting the output at an incorrect time
and we won't really know what is happening. What happens without the "flush" is that the output
goes into a buffer. This buffer is outputted to the screen only when the task finishes execution or
when some other things happen. To be sure we get the output in the correct order, we use
"flush". This ensures that the output is displayed on the screen when the "put" statement is
reached.

GENERICS

With generics, we can save writing a lot of code. Generics allow us to write packages and
procedures for an undetermined type (the generic parameter type) and instantiate the
package/procedure for any type we need. For example, suppose we need a swap function for
integers, one for reals, and one for characters. Instead of writing the same function3 times, each
time only changing the types in the parameters, we write a generic function, and instantiate it for
integers, reals, and characters. We could also instantiate for strings and arrays, as you will sce
later. Ada95 gives us new features that allow us to enhance Ada's generic capabilities, including
generic packages with unconstrained types (strings, arrays, etc.). We will first explain each new
feature, then we will give a complete example that implements a generic stack, using these generic
features.

The features:

1. Generics - Unconstrained parameters.
2. Formal Generic Package Parameters.
3. Other Improvements:

4. Abstract Types and Subprograms.

5. Aliased Types.

Generics- Unconstrained

In Ada 83, generic packages did not accept unconstrained types as parameters. Thatis, we
couldn't instantiate a package with the type "string" or some sort of array type. This limited us
somewhat. Now, with this new feature, Ada 95 permits the use of unconstrained types as
parameters to a generic.

This feature does, however, have a necessary limitation. We are not allowed to declare an
uninitialized object of type T (the unconstrained parameter type) in the body of the generic. The
following code will illustrate this limitation. Suppose we want to createa generic swap function
for unconstrained type and let type "T" be the generic type:

procedure Swap (A, B: T)is

Temp: T; -- <---- This is not valid.
begin

Temp :=A;

A :=B;

B :=Temp;
end Swap;

But when we write "Temp: T" we are declaring an (uninitialized) object of a generic unconstrained
type, which we are not allowed to do. There are ways around this. We could still create the swap
function using pointers, but this is a complex process.



The way to make a generic-unconstrained package is:

generic
type T(<>) is private;
package gen_stack is

end geﬁ_'_'stack;
Functions or procedures that use the unconstrained type are written as follows:
procedure push(a: in T) is
begin A
end push
To instantiate the package for the type "string" we write:
package string_gen_stack is mew gen_stack(string);

At the end of this section I will give a complete example in which generics - unconstrained will be
used and explained further.

Formal Generic Package Parameters

The concept of generic packagesis expanded in Ada 95 with the addition of formal generic
package parameters. Formal generic package parameters allow the user to define a generic
package based on a previously compiled generic package, which is accepted as a formal parameter
of the new generic package. Thus a generic package could be created for complex numbers that
accepts one of the various float types for instantiation. Then another generic package that handles
polar operations on complex numbers could be created and would acceptany instantiation of the
original complex numbers packages as a parameter upon its instantiation.

[ncorporating formal generic package parameters into a program is fairly simple. If, as
above, we were creating two generic packages, where one handled complex numbers and the other
handled polar operations on complex numbers, these packages could be defined as

generic
Float_Type is digits;

package Generic_Complex_Numbers is
type Complex is private;

function "+" (Left, Right: Complex) return Complex;
--(Similarly for -/,*, etc.)

end Generic_Complex_Numbers;
and

with Generic_Complex_Numbers;

generic

with package Complex_Numbers is new Generic_Complex_Numbers (<>);
package Generic_Complex_Polar is



-- Types, functions, and procedures necessary for polar operations on complex number
end Generic_Complex_Polar;
Instantiation of these two packages is then accomplished by the following statements.

package Complex_Floats is new Generic_Complex_Numbers(Float);
package Polar_Complex_Floats is new Generic_Complex_Polar(Complex_Floats);

There are several problems with this feature of Ada 95. First, if an original generic
package uses an unconstrained parameter such as

generic
Float_Type is digits <>;

then a subtype or derived type of the unconstrained parameter must be declared if that type is
needed within a second package that uses the original package as a formal generic package
parameter. Second, given an instantiationof a generic package, no more than one new generic
package may be instantiated within a single program using that original instantiated package as a
formal generic package parameter. For example if there were three generic packages for complex
numbers, GCNumbers, GCPolar, and GCVectors, where both GCPolar and GCVectors had
GCNumbers as a formal generic package parameter, then the following instantiation of the three
packages would be invalid.

package Complex_Floats is new GCNumbers(Float);
package Polar_Complex_Floats is mew GCPolar(Complex_Floats);
package Vector_Complex_Floats is new GCVectors(Complex_Floats);

This severely restricts the usefulness of formal generic package parameters. As far as could be
determined from the existing documentation for Ada 95, this is a restriction imposed by Ada 95
and not specific to any implementation.

Despite these limitations, formal generic package parameters are still quite useful for
creating generic systems within Ada 95. This feature is just unable to reach its full potential with
the present system, but it still does greatly expand the usability and usefulness of generic
packages.

Abstract Data Types and Subprograms
An Abstract Data Type is a type that serves as parent to other types. It can have data
elements, that all its children inherit, and abstract procedures and functions that, although they
don't do anything, require all children to have these subprograms as well.
For example:

Suppose you have 3 different types of tires. The 3 tires have common features, but no tire
has features that are a superset of the features of another tire. Thus, no tire inherits qualities
from another. There is no reason that one of these tires should be the parent of any of the
others. In this case, an abstract base_tire_type could contain the common qualities of all 3 tires,
and then have each tire type inherit from base_tire_type.

An advantage is that this lets the programmer imitate the real world in a better way.

An example:

Consider a phone directory where information for "Basic" and for "Complete" can be
stored. By "Basic," | mean relatives and all acquaintances. By "Complete" I mean close friends.
Since I am mostly interested in "Complete," I want more information on them. Thus, the entries
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for "Complete" will allow me to enter more information.

The base_type is "Basic_Entry," which is in package called "Base_Directory_Entry". This
abstract type has a data element called "Name". This requires all directory entries to have a name,
(regardless of "Basic" or "Complete"). It also has an abstract procedure called "Display”,
requiring all directory entries to have a way of displaying themselves.

"Normal_Entry" inherits from "Basic_Entry" and adds a data element called "Telephone".
It also includes the procedure "Display". Remember, "Basic_Entry" is the abstract type and has

the abstract subprogram "Display". This means that all types inheriting from it, will have to have
their own "Display”, such is the case here.

"Complete_Entry" inherits from "Normal_Entry and adds the data elements Address.
Commentl, and Comment2. It also overwrites "Normal_Entry"'s "Display".

The code for these types follows:

package base_directory_entry is

type basic_entry is abstract tagged
record

name: string(1..100);
end record;

package normal_directory_entry is
package int_io is new integer_io(integer);
use int_io;

type normal_entry is new base_directory_entry.basic_entry with
record
telephone : string(1..100);
end record;

type complete_entry is new normal_entry with
record
address : string(1..100);
comment] : string(1..100);
comment?2 : string( 1..100);
end record;

procedure display(ce: in out complete_entry);

end normal_directory_entry;




package body normal_directory_entry is

procedure display(ne: in out normal_entry)is

begin
put(" Name :"); put_line(ne.name);
put(" Telephone : "); put_line(ne.telephone);
end display;

procedure display(ce: in out complete_entry) is
begin

display(normal_entry(ce));

put(" Address :"); put_line(ce.address):

Put(" Commentl :"); put_line(ce.comment1);

PUT(" Comment2 : "); put_line(ce.comment2);
end display;

end normal_directory_entry;

Aliased Types

Pointers have been greatly enhanced in Ada 95 through the use of aliased types.
Previously it was not possible to create pointers to objects declared as variables or constants. The
addition of aliased types to Ada95 allowsa pointer to point to an object, instead of needing to be
dynamically created as before. Aliased types are used in the following manner

type Float_Ptris access all Float;
type Const_Ptris access constant Float:

Pointerl: Float_Ptr;

Pointer2: Const_Ptr;

A: aliased Float;

G: aliased constant Float := 9.8;

Pointerl := A'Access:
Pointer2 := G'Access;

In the definition of an access type, the all qualifier indicates pointers which will point to aliased
variables and thus have read and write access, whereas the constant qualifier indicates those that
will only have read access to the variable to which they point.

Aliased types now allow for easy manipulation of pointers, without the worries of dangling
references. Furthermore, aliased types allow pointers to point to constant values, restricting such
pointers to read only, even when they point to a variable. Furthermore, constant pointers and
variable pointers cannot be interchanged, but constant pointers need not point to a constant. For
example

Pointer2 := G'Access --a pointer to a constant
Pointer2 := A'Access --a pointer to a variable

since Pointer2 is of Const_Ptr type, Pointer2 would have read access only to G or A with the
above assignment statements, even though A is a variable. Conversely, a variable pointer could
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not be assigned to point to a constant.

Although they are not very useful for creating large linked-lists or other pointer structures,
aliased types can be used for creating small linked structures. The problem with creating large
linked structures with aliased types is that each node needs to be declared as a variable. While this
eliminates the problem of dangling references, it is not very efficient, nor is it as dynamic as a true
linked structure. Of course, a linked structure using aliased types would be easy to rearrange and
manipulate as necessary, since the pointers can be directly assigned to point to the various nodes,
without the need of a temporary pointer to hold on to a disconnected node, which would become a
dangling reference in a normal linked structure. Furthermore, aliased types can be used to point
into the middle of composite types. Thus, it is not necessary to create a pointer to a record, to
access some field of that record, but rather the pointer can be assigned to point directly to the
desired field. as long as that field is marked as aliased.

An Example of Generics
The following example implements a stack of
anything. That is, the statement

package int_stack is new stack(integer);

instantiates a stack of integers. The same can be accomplished with strings or any other type,
constrained or unconstrained.

The same problem occurs here as in the "swap" function. To have a linked list we need to
declare a record in which one of the elementsis of type T (the generic unconstrained type). As
you know by now, we cannot do that. The way around this is to use pointers or as they are called
in Ada "access variables". Thatis, in the record, instead of having an element of type T, we have
a pointerto it (an access variable to type T). Therefore, the record contains one element thatis a
pointer to T, and another that is a pointer to the next element (since the stack is implemented as a
linked list).

It turns out that the "generic unconstrained" feature can be used to create many different
kinds of data structures, such as stacks, binary search trees, hash tables and so on. Thisis very
useful, because, for example, AVL trees are not trivial to rewrite each time we need them for a
different type. This way, we just instantiate our generic AVL tree for the type we need and that is
it.

The code for the generic stack is as follows:

-- This implements a stack of unconstrained type T,
-- 1t has procedure push and [unction pop.

-- Push: takes an clement of type T.

-- pop: returns an element of type T.

with ada.lex(_io, ada.strings.unbounded, ada.integer_text_io, ada.lloal_text_io;
use ada.lexl_io, ada.strings.unbounded, ada.integer_text_io, ada.float_lext_io;

generic
type T(<) is private;
package pgen_stack is
type T_access is private;
type list_node;



type linked_listis access lisl_nodc;

type list_node is

record
pdata : T_access; -- this will be pointing to the data T
next : linked_list;

end record;

i : integer;

1l: linked_list; -- were the stack will be.

procedure push(a: in T);
funetion pop return T;

private
type T_access is access all T -- pointer to the generic type T

end gen_stack;

package body gen_stackis
stack_error: exception;

procedure push(a:inT)is
temp : linked_list;

begin
temp := new list_node'(new T'(a), 11);
Il := temp;

end push;

function popreturn T i s
-~ il it is null, then it will return null
temp: linked_list;
begin
if 1l = null then
raise stack_error; -- raise an exception
else
temp := I3
Il:= ll.next;
return temp.pdata.all;
end if;
end pop;

end gen_stack;

The following shows how to instantiate a stack and use it.

procedure mainis
package string_gen_stack is mew gen_stack(string);
use string_gen_stack;
push(" Hello ");
push(" Manuel ");



put(pop);
put(pop);

end main;
The program would output:

Manuel Hello

Strings

Previously, Ada did not support strings to a large extent. Although the string type was
defined, it only allowed strings of fixed length, and the only operations defined for the string type
were concatenation and comparison. Thus, a major expansion to Ada 95 is the predefined libraries
for strings. There are several new packages covering fixed length, bounded, and unbounded
strings, as well as character mapping between strings. Fixed length strings are strings which have
a set length and must be padded if the desired string is not long enough to fill the string. Bounded
length strings have a maximum length, but do not necessarily have to fill that length. Unbounded
strings are strings which can be of any length.

Many new functions are defined within each of these packages for the different types of
strings. Some of the most important functions are those which allow the user to convert between
the three string types. The majority of the functions are for manipulating strings, such as
concatenation, returning the head or tail of the string or counting the number of occurrences of a
substring within a string. As well as functions for manipulating the string types, there are
comparison functions defined for bounded and unbounded strings. All of these new predefined
library packages add significantly to Ada 95, by making it simpler and more efficient for the user
to work with strings.

Instead of detailing all of the functions and procedures defined in the new predefined
library packages, only those functions or procedures used in the example program will be
examined after the actual program. For more information refer to appendix A.4 of the Ada 95
Reference Manual.

An_Example Program for Strings

The program in this example excepts message strings of up to 256 characters in length and
encodes or decodes. The code used by the program to translate messages is entered by the user
and is stored as a character mapping function.

with Text_1O; use Text_|O;

with Ada Characters.Handling; use Ada.Characters.Handling;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Ada.Strings.Bounded; use Ada.Strings.Bounded;

with Ada.Strings.Fixed; use Ada.Strings.Fixed;

with Ada.Strings.Maps; use Ada.Strings.Maps;

procedure CodeMaker i s
package CodeStrings i s new Generic_Bounded_Length(26); use CodeStrings;
protected type Messagesis
function Read return Unbounded_String;

procedure Add (NewMessage: Unbounded_String);
procedure Clear;
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private

TheMessage: Unbounded_String := Null_Unbounded_String;
end Messages;
protected body Messages is

function Read return Unbounded_String i s

begin

return TheMessage;
end Read;

procedure Add (NewMessage: Unbounded_String) i s
begin

TheMessage := TheMessage & NewMessage;
end Add;

procedure Clearis
begin
TheMessage := Null_Unbounded_String;
end Clear;
end Messages;

WillSellDestruct,CodedMessage, DecodedMessage: Messages;

task Encoderi s
entry Incoming(Message: Unbounded_String);
entry CodeDefn(Original,Code: Bounded_String);
entry Quit;
pragma Priority(5);

end Encoder;

task body Encoderis
type MapPtr i s access all Character_Mapping;

CodePtr: MapPtr;
Map: aliased Character_Mapping;
Finished: Boolean := False;
begin
loop
select
accept Incoming(Message: Unbounded_String) do
put_line("<<<Encoding>>>");
declare
Copy: String:= To_String(Message);
begin
Copy:= To_Lower(Copy);
Translate(Copy,CodePtr.all);
CodedMessage. Add(To_Unbounded_String(Copy));
WillSelfDestruct.Clear;
DecodedMessage.Clear;
end;
put_line("<<<Complete>>>");
end [ncoming;
or
accept CodeDefn(Original,Code: Bounded_String) do



Map := Tn__Mupping(To_Slring{Originul),To_Slring(chJc})',

CodePur := Map'Access;,
end CodeDeln;
or
accept Quit do
Finished := True:
end Quit;
else
delay(l.00);
end sclect;
exit when Finished:
end loop:
end Encoder:

task Decoderis
entry Incoming(Message: Unbounded_String);
entry CodeDeln(Original,Code: Bounded_String):
entry Quit,
pragma Prionty(3);

end Decoder;

task body Decoderi s
tvpe MapPtr i s access all Character_Mapping;

CodePtr: MapPtr;
Map: aliased Character_Mapping:
Finished: Boolcan := False,
begin
loop
select
accept Incoming(Message: Unbounded_String) do
put_line("<<<Decoding>>>");
declare
Copy: String:= To_String(Message);
begin
Copy:= To_Lower(Copy);
Translate(Copy,CodePtr.all);

DecodedMessage. Add(To_Unbounded_String(Copy));

WillSellDestruct.Clear;
CodedMessage. Clear;
end;
puL_Iine("<<<Complclc>>>");
end Incoming;
or
accept CodeDefn(Original,Code: Bounded_String) do

Map := To_Mapping(T o_String(Code),To_String(Original));

CodePtr ;= Map'Access;
end CodeDeln;
or
accept Quit do
Finished := True;
end Quit;
else



delay(1.0);
end sclect;
exit when Finished;
end loop;
end Dccoder;

task CreateCodeis
entry NewCode,
entry Quil;
pragma Priority(7);
end CreateCode;
task body CrealcCode i s
Finished: Boolean := False;
begin
loop
select
accept NewCode do
declare
Original: Bounded_String := Null_Bounded_String;
Code: Bounded_String := Null_Bounded_String;
OriginChar,CodeChar; Character;
begin
put_line("Enter a '.' to exit");
loop
put("Enter the character of the original text: ");
get(OriginChar);
skip_line;
if OriginChar ="' then
exit;
else
i f (CodeStrings.Count(Original, To_Set(OriginChar))>0) then
put_line("That character has already been entered.");
elsif not(Is_Letter(OriginChar)) then
put_line("That character is not valid.");
else
OriginChar := To_Lower(OriginChar);
Append(Original,OriginChar);
loop
put("Enter the character of the coded text: ");
get(CodeChar);
skip_line;
i f (CodeStrings.Count(Code,To_Set(CodeChar))>0) then
put_line("That character has already been entered.");
else
Append(Code,CodeChar);
exit;
end if;
end loop;
endif;
endif;
exit when Length(Original) = 26;
end loop;
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Encoder.CodeDeln(Original,Code);
Decoder.CodeDeln(Original,Code);
end;
end NewCode;
or
accept Quit do
Finished := True;
end Quit;
else
delay(1.0);
end sclect;
exit when Finished;
end loop;
end CrealeCoxde;

task Controlleris
pragma Priority(0);
end Controller;
task body Conuroller i s
Choice: Character;
Finished: Boolean := False;
Message: String(1..256);
Length: Natural;
begin
delay(5.0);
loop
Flush;
new_line;
put_line("Would you like to:");
put_line("  1). Enter a Message");
put_line("  2). Encode a Message");
put_line("  3). Decode a Message");
put_line("  4). Change the Code");
put_line("  5). View the current encoded message.");
put_line("  6). View the current decoded message.");
put_line(" 7). Clear all messages.");
put_line("  8). Quit");
new_line;
put("Enter your choice (1-8): ");
get(Choice);
skip_line;
new_line;
case Choiceis
when 'l' => put_line("Enter the message below: ");
get_line(Message,Length);
WillSelfDestruct. Add
(To_Unbounded_String(Message(1..Length)));
when '2' => Encoder.Incoming(DecodedMessage. Read & WillSel{Destruct.Read);
put_line("The coded message is: ");
put_line(To_String(CodedMessage.Read));
when '3' => Decoder.Incoming(CodedMessage.Read & WillSelfDestruct. Read);
put_line("The decoded message is: ");
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put_line(To_String(DecodedMessage.Read));
when '4' => CreateCode.NewCode;
when '5' => pul_line("The current encoded message is: ");
put_line(To_String(CodedMessage.Read));
when '6' => pul_linc("The current decoded message is: ");
put_line(To_String(DecodedMessage.Read));
when 7' => WiliSeliDestruct.Ciear;

Codediviessage.Ciear;
DecodedMessage. Clear;
when '8' == CreatcCode.Quit;
Encoder.Quit;
Decoder.Quit;
Finished := True;
when others => pul_line("That choice is not valid.");
end case;
new_line;
exit when Finished;
end loop;

end Controller;

begin
CreateCode. NewCode;
delay(1.0);

end CodeMaker;

The following functions and procedures were used in the example program and are from
the library packages Ada.Characters.Handling, Ada.Strings.Unbounded, Ada.Strings.Bounded,
Ada.Strings.Fixed, or Ada.Strings.Handling. It is important to note that many of the
subprograms exist as both functions and procedures.

First, bounded length strings are implemented by using a generic package, so bounded
length strings were instantiated to be of length 26 in order to hold the entire alphabet.

The '&' operator takes two strings of the same type (bounded, unbounded, or fixed length)
and concatenates them into one string.

A character mapping function can be defined through the use of the function To_Mapping
which accepts two fixed length strings and returns a function which will map a character in the
first string to a corresponding character in the second.

The function To_String will convert either an unbounded or a bounded string to a fixed
length string with a length matching that of the original bounded or unbounded string. The
functions To_Unbounded_String and To_Bounded_String will convert fixed length strings into
unbounded and bounded length strings respectively.

To_Lower is a function that takes a string and converts all of its characters to lower case.

The procedure Translate takes a string and translates it using a character mapping function
provided as one of the parameters to the procedure.

The function Count counts the number of instances of a specific substring or character
within a string.

The Boolean function Is_JLetter determines whether or not a character is one of the letters of
the alphabet.

Append is a procedure that adds a character or substring to the end of a string.

The function Length returns the length of a string.

It is important to note that get and put procedures are only defined for fixed length strings.
Thus, in the example program, the size of the message is limited to 256 characters because it must
be read as a fixed length string, but it is converted to an unbounded string for use within the
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program. The problem of only being able to read and write fixed length strings can be solved in a
number of ways. The simplest method to output either a bounded or unbounded string is to use
the To_String function like so

put_line(To_String(The_Bounded_or_Unbounded_String);

Reading strings of indeterminate length as input is a little more difficult. The string could be read
character by character and each character could be added onto the end of the string as it was read,
which would work well for unbounded strings, but would require a large amount of error
checking for unbounded strings. Or, string input could be broken up into smaller fixed length
strings which are then concatenated together to form the entire string. The easiest solution, of
course, is to limitthe length of string being entered to a set length, which would by definition
make it a fixed length string.

Object-Oriented Programming

The are three main components to object-oriented programming, encapsulation,
inheritance, and polymorphism. Encapsulation was provided in Ada 83 through the use of
packages. Ada 83 also provided inheritance with derived types. The addition of polymorphism
has made Ada 95 a true object-oriented language. The new featuresin Ada 95 which are related to
polymorphism are

1. Tagged Types

2. Class Wide Programming
3. Dynamic Type Selection
4. Public Children

5. Private Children

6. Generic Children

Tagged Types Lol
Polymorphism is added to Ada 95 through the addition of tagged types. The inheritance of

tagged types allows for the creation of derived types simply and efficiently. This inheritance is
extended to all types derived from the original type. This can be seen in a simple example which
has the following hierarchy

Rectangle

.

Square Cuboid

Cube

In the above example Cube inherits from Cuboid which inherits from Rectangle even though
Cuboid is not defined as tagged. ) . :

Tagged types allow for object oriented classes to be defined easily. Any functions or
procedures which immediately follow a tagged type definition will be the operations associated
with the class defined by the tagged type and will be the operations inherited by children of the
tagged type. Thus, the hierarchy above could be created as follows
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type Rectangle is tagged with
record
Length: Float;
Width: Float;
end record;
function Size(R: in Rectangle) return Float is
begin
return R.Length * R.Width;
end Size;

type Square is mew Rectangle with null record:;

type Cuboid is mew Rectangle with

record

Height: Float;

end record;
function Size(C: in Cuboid) return Float is
begin

return C.Length * C.Width * C.Height;
end Size;

type Cube is mew Cuboid with null record:;

The first class, Rectangle, is the base class from which all of the other classes inherit. It consists
of a record with two fields, Length and Width. There is also one function defined for the class,
Size, which computes the area of the rectangle. The next class, Square, is an exact duplicate of
Rectangle, since the record is not expanded, no new functions or procedures are defined, and the
inherited function Size is not redefined. In a more complex structure, where a perimeter function
was defined for Rectangle as well, the difference between Square and Rectangle could be more
readily seen, since Square’s perimeter function would be different from Rectangle’s. Cuboid is
also derived from Rectangle, but it expands the record by adding the field Hei ght. Furthermore,
with the addition of Height, the function Size must be redefined for Cuboid. Finally, similar to
Square, Cube is an exact duplicate of its parent Cuboid.

Another important feature of tagged types is that new types derived from an original tagged
type can be placed in separate packages and compiled separately. This allows for extension
without disturbing the existing code further promoting encapsulation, since each class is contained
within a separately compiled program unit.

Class Wide Programming
A useful extension of tagged types is class wide programming. For each tagged type T

there is a type T’Class, to which any type derived from T can be converted. This is very useful
because it allows T and all types derived from T to be passed as parameters to procedures or
functions. Furthermore, pointers can be created to point to a class wide type declaring them to be

type Class_Ptris access T’Class;

Then if a primitive operation is called using either the pointer or the parameter the program will
implicitly choose the operation appropriate to the type of the class wide object. This choice of
appropriate operation to match the class wide type is called dispatching.

Thus, as in the example hierarchy from tagged types, a pointerto a class wide type could
be assigned to point to Rectangle first, then to Square, then Cuboid, and finally to Cube.” After the
pointer is assigned, it could be passed as a parameter to a procedure which calls the primitive
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operation Size on the pointer, and since the pointeris a pointer to a class wide t

: . . : e th
automatically selects the appropriate Size function for each of the different types. e

type Class_Ptr is access Rectangle’Class;

Shape_Ptr: Class_Ptr:
A: Rectangle;

B: Square;

C: Cuboid;

D: Cube:

f).llncedure Shape_Size (Shape: in out Class_Ptr) is
begin

S.i'ze(Shape.all);
end Shape._Size:

Shape_Ptr.all := A;
Shape_Size(A);
Shape_Ptr.all := B;
Shape_Size(B);

-- etc.

This can also be accomplished without the use of pointers. A procedure can be defined so that its
parameter is a class wide type. Then the procedure can be called on each shape and again the
primitive operations are called as appropriate.

procedure Shape_Size (Shape: in out Rectangle’Class) is
begin

.S-i.ze(Shape};
end She'li;;e_Size;

S'I'lape_Size(A):
Shape_Size(B);
-- etc.

[t is important to note that when using pointers to class wide types, the pointer must be
initialized to point to the value of the class wide type when storage is allocated to it. Thus, in the
example program, in order for a pointer to point to Rectangle, an object of type Rectangle must
first be defined, and then the pointer must be initialized to that object.

Dynamic Type Selection

Ada 95 is further enhanced through the addition of dynamic type selection. Basically,
dynamic type selection allows the definition of pointers to subprograms. Furthermore, these
pointers can be used to pass the subprograms as parameters to other subprograms, which greatly
expands the capabilities of Ada 95.

Pointers to subprogram units can be defined in two ways. A pointer to a function would
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be defined as follows

type Function_Ptris access function (A: Typel; B: Type2; ...) return Value_Type:

Thus, Function_Ptr is an access type to any function which has a first parameter of Typel,

second parameter of Type2, etc. and returns a value of Value_Type. A pointer to a procedure is
much simpler.

type Procedure_Ptris access procedure (A: Typel; B: Type2; ...);
Procedure_Ptr is an access type to any procedure which has parameters of Typel, Type2, etc.

Dynamic type selection has a large variety of possible uses. It can be used to construct a
queue of procedures to be executed on a certain variable or variables. Or it can allow a procedure
to call other functions or procedures based on selection routines within the first procedure. Also, it
could be used to create a function which calls another function, passed as a parameter, repeatedly.
Yet, it is the simple elegance of its use that is the most outstanding aspect of this feature.

Public_Children

Ada 95 allows packages to be structured into hierarchical libraries, in which child packages
can be created from existing packages. This allows for packages to be expanded without the need
for recompiling or disturbing working code. A public child is a child package which is visible
outside of the hierarchy in which it exists. Although its visible declarations do not have access to
the private part of its parent, a public child’s private part and body can both access the private part
of its parent.

Child packages are easily defined in Ada 95. If for examplea package for floating point
complex numbers existed, and was called Complex_Numbers, then a child package which would
handle vector operations on floating point complex numbers could be created as follows

package Complex_Numbers.Vectors is
--Specifications for vector operations on complex numbers

end Complex_Numbers, Vectors;
package body Complex_Numbers.Vectors is

--Function and procedure bodies for operations in specification
end Complex_Numbers.Vectors:

Then, to use Complex_Numbers.Vectors in a program or packagea simple ‘with’ statement is
required.

with Complex_Numbers.Vectors; use Complex_Numbers.Vectors;

Itis important to note, that if elementsfrom the package Complex_Numbers were also needed,
then a ‘use’ statement would be required for Complex_Numbers as well, but a ‘with’ statement
would not be necessary, since a ‘with’ statement is implicitly declared for a parent, when a ‘with’
statement is given for one of its children.

One of the main problems of the hierarchical libraries is thatin order to make use of all the
packages within the structure, a use statement for each package must be included, which could
become cumbersome when using a library with a large number of children, grandchildren, etc. or
calls to child package procedures, functions, etc. must be of the form:
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<child package name>.<name of typelfunctionlprocedureletc.>

Which in a large library would become unreadable.

Of course there are also many advantages to the hierarchical library structure. The most
important advantage is the fact that existing code is not disturbed when packages are expanded
through the use of a child package, because the parent package does not need to be recompiled,
which makes it very useful for creating classes for object-oriented programs. Additionally, parent
packages can depend on their children, through the use of with clauses, and children can depend
on theirsiblings, again through the use of with clauses, as well as depend on completely separate
packages as is normal.

Private Children

An additional expansion of the hierarchical library system of Ada 95 is the concept of
private children. A private child is a child unit, in the library structure, that is completely private to
its parent unit. Furthermore, a private child is only visible within the subtree rooted at its parent
unit. And, since it is not visible outside of its parent's subtree, a private child can access the
private part of its parent.

A private child is defined exactly like a public child, except the word private is placed at the
beginning of the specification. Thus if the child package Complex_Numbers.Vectors was to be
changed to be a private child, the code would be changed to look like this

private package Complex_Numbers.Vectors is

% .Exactly as before

Private children are a useful feature conceptually, but without a large hierarchical library
structure to support their use, the usefulness of private children is greatly decreased, complicating
what could otherwise be a simple program.

Using private children presents some problems similar to those found in using public
children. First, using private children further complicates the hierarchical library structure which
must be maintained. Second, just as in the use of public children, private children require a use
statement, and maybe a with statement, for each package from the structure which is to be used, or
a cumbersome prefix system, if the use statement is not included.

The benefit of using private children is that packages can be expanded without the need for
recompilation, and at the same time remain private outside of the tree rooted at the packages parent.
But this alone is not sufficient justification for the use of private children. There must also be a
complex enough library structure to warrant their use.

Generic_Children :

A generic child is just the same as the other kind of children, but generic, which means that
it can work for different types of variables, thus making the childrena lot more flexible. For
example, if you want a generic child of "integer," you instantiate the package for "integer" and you
are set.

Things I noticed:

The compilerdidn't let me instantiate a child generic package inside the main procedure in
the main program. Thus they have to be instantiated in a separate file. Since the child package
needs to refer to the generic parent, the parent must also be instantiated in a separate file. In the
example package "real_complex_numbers" (instantiation of "complex_numbers") and package
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"real_comp_lqunumbcrsﬁpolar" (instantiation. of "complex_numbers.polar") are in separate files.
Notice that the rationale says to instantiate package "complex_numbers.polar" the
following way

package float_complex_numbers_polar is new complex_numbers.polar
This doesn't work. Instead, the package must be instantiated by

package float_complex_numbers_polar is new float_com plex_numbers.polar.

Generic functions, procedures, and packages are very useful. Therefore, generic children
are also very useful. It is also good that the generic children have access to the private elements of

the parent.

An example of a generic child:

-- This is a generic package

generic
type float_type is digits<>;
package Complex_Numbers is
type Complex is private;

function "+" (Left, right: Complex) return Complex;
oy, similarly ll_"‘ II*"‘ and "!["

end Complex_Numbers;

package body complex_numbers is
- Function and procedure bodies for the package complex_numbers

end complex_numbers;

-- This is a generic child package:

generic
package Complex_numbers.polar is

function Polar_to_complex(R, Theta: float_type) return Complex;
function "abs" (right: Complex) return float_type;
function Arg(X: Complex) return float_type;

end complex_numbers.polar;

948



package body complex_numbers.polar is

-- Function and procedure bodies for the package complex_numbers.polar

end complex_numbers.polar;

-- This is the package that corresponds to the instantiation of
-- "complex_numbers" with floats.

with complex_numbers;
package float_complex_numbers is new complex_numbers(float):

-- This is the package that correspond to the instantiation of
-- complex_numbers.polar, or actually float_complex_numbers.polar (because

-- that is the package that corresponds to complex_numbers instantiated
-- for floats).

with complex_numbers.polar, float_complex_numbers;
package float_complex_numbers_polar is new float_complex_numbers.polar;

An Example of Object-Oriented Programming in Ada 95

The following example reviews the main features of object-oriented programming in Ada
95. The exampleis an expansion of the example given in the section on tagged types. In this
example an abstract base class called Polygon is created. The classes derived from polygon have
the following hierarchy

Class Polygon - abstract
Data - Position_X, Position_Y
Subprograms -Set_Position (X,Y)

Perimeter (P)
& \
Class Triangle lass Quadrilateral
Data- S1,52,S3 Data- S1,S2,53,54 :
Subprograms -Set_Sides (S1,52,S3) Subprograms -Set_Sides (S1,52,53,54)
Perimeter (T) Perimeter (Q)
Class Right Triangle Class Rectangle :
Subprograms -Set_Sides (B,H) Subprograms -Set_Sides (L,W)
Area (RT) Area (R)

Class Square
Subprograms - Set_Sides (S)

Furthermore, in order to show true encapsulation, each of the classes will be placed in a separate
package and these packages will form a hierarchical library system of parent and child packages,
with the package for class Polygon as its root.
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— e —
- Class Polygon
— —<>-
package Poly_Pack is
type Polygon is abstract tagged with
record
Position_X: Float:
Position_Y: Floal;
end record;

procedure Set_Position (X,Y: in Float; Shape: out Polygon);
function Perimeter (P Polvgon) return Floal is abstract;
end Poly_Pack;
package body Poly_Pack i s
procedure Set_Position (X,Y: in Float; Shape: out Polygon) is
begin
Shape.Position_X := X
Shape.Position_Y = Y;
end Sel_Position: ‘
end Poly_Pack;

-- Class Triangle |
- <>

package Poly_Pack.Tri_Pack i s
type Triangle i s new Polygon with ‘
record
81, 82, 83: Float;
end record;

procedure Set_Sides (A,B,C: in Float; Shape: out Triangle);
function Perimeter (T: Triangle) return Float;

end Poly_Pack.Tri_Pack;

package body Poly_Pack.Tri_Pack i s
procedure Set_Sides (A,B,C: in Float; Shape: out Triangle) i s

begin
Shape.S1 := A;
Shape.S2 := B;
Shape.S3 := C;

end Sect_Sides:

function Perimeter (T: Triangle) return Float i s
begin
return T.S1 + T.82 + T.S3;
end Perimeter;
end Poly_Pack.Tri_Pack;

—> <>
-- Class Right Triangle
—> <>

with Ada.N:.lmerics.Elernentarthunctions; use Ada.Numerics.Elementary_Functions;
package Tri_Pack.RightTri_Packis
type Right_Triangle i s new Triangle with null record:
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procedure Set_Sides (B.H: in Float: Shape: out Right_Triangle);
function Area (RT: Right_Triangle) return Float;

end Tri_Pack.RightTri_Pack:

package body Tri_Pack.RightTri_Pack i s
procedure Sel_Sides (B,H: in Float: Shape: out Right_T

nangle) i s
begin
Shape.S1 :=B;
Shape.S2 := H;
Shape.S3 = Sqri(B*B + H*H);
end Sct_Sides:

function Arca (RT: Right_Triangle) return Float i s
begin
return 0.5 * B # |;
end Arca;
end Tri_Pack.RightTri_Pack:
— <
-- Class Quadrilateral
——>. P SO
package Poly_Pack.Quad_Puck i s
type Quadnlatcral i s new Polygon with
record
S1, 82, 83, S4: Float:
end record;

procedure Set_Sides (A,B,C,D: in Float: Shape: out Quadrilateral);
function perimeter (Q: Quadrilateral) return Float;

end Poly_Pack.Quad_Pack;

package body Poly_Pack.Quad_Pack i s

procedure Set_Sides (A,B,C,D: in Float; Shape: out Quadrilateral) i s

begin
Shape.S1 = A;
Shape.S2 := B;
Shape.S3 = C;
Shape.S4 ;= D;

end Set_Sides;

function Perimeter (Q: Quadrilateral) return Float i s
begin
return Q.S1 + Q.82 + Q.83 + Q.84;
end Perimeter;
end Poly_Pack.Quad_Pack;

—— S
-- Class Rectangle
—> -

package Quad_Pack.Rect_Pack i s
type Rectangle i s new Quadrilateral with null record;

procedure Sel_Sides (L,W: in Float; Shape: out Rectangle);
function Area (R: Rectangle) return Float i s;
end Quad_Pack.Rect_Pack;
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package body Quad_Pack.Rect_Pack i s
procedure Set_Sides (L,W: in Floal: Shape: out Rectangle) i s
begin

Shape.S1 :=L;
Shape.S3 := Shape.S1;
Shape.S2 := W;

Shape.S4 := Shape.S2;
end Sct_Sides;

function Area (R: Reclangle) return Float i s
begin
return R.S1 * R.S2:
end Arca;
end Quad_Pack.Rect_Pack;
— e
-- Class Square
> -
package Rect_Pack.Sqr_Pack i s
type Squarc i s new Rectangle with null record:

procedure Sel_Sides (S: in Float; Shape: out Square);
end Rect_Pack.Sqr_Pack;
package body Rect_Pack.Sqr_Pack i s
procedure Sct_Sides (S: in Float; Shape: out Squarc) i s
begin
Shape.S1 := §;
Shape.S2 := Shape.S1;
Shape.S3 := Shape.S1;
Shape.S4 := Shape.S1;
end Set_Sides;
end Rect_Pack.Sqr_Pack;

— <
-- A program using the above class hierarchy

with Rect_Pack.Sqr_Pack, Tri_Pack.RightTri_Pack, Text_IO;
use Poly_Pack, Tri_Pack, RightTri_Pack, Quad_Pack, Rect_Pack, Sqr_Pack, Text_lO;
procedure Exampleis

package fio i s new Float_[O(Float); use fio;

procedure PrintPerimeter (Shape: in Polygon'Class) i s
begin
new_line;
put("The perimeter of this shape is ");
put(Perimeter(Shape), 1,3,0);
new_line(2);
end PrintPerimeter;

A: Triangle;

B: Quadrilateral;
C: Right_Triangle;
D: Rectangle;

E: Square;
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begin
Sel_Sides(5.0,7.0,3.0,A):
Set_Position(0.0,1.5,A)
Set_Sides(6.8,E);
Set_Position(-2.0,4.5,E);
PrintPerimeter(A );
PrintPerimeter(E);
put("The arca of the square is "):
put{Arca(E),1.3.,0):

end Example;

]

This example program would have the following as its output

The perimeter of the shape is 15.000

The perimeter of the shape is 27.200

The area of the square is 46.240

In summary, many enhancements have been added to Ada 95. These additions have
brought Ada back to the forefront of programming languages. Ada 95 has been expanded and
enhanced to cover many modern programming issues, such as object-oriented programming, and

yet still retains the security and readability of Ada 83. Once again Ada has proven itself to be one
of the major programming languages of yesterday, today, and tomorrow.
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Computer Science 495
Object-Oriented Programming
Fall 1995

Meeting Time and Place: TR 8:00 - 9:20
VZN B24

Professor:  Herbert L. Dershem
Office: VWF 220
Phone: 7508
Mailbox: Username “DERSHEM”

Prerequisites: CSCI 286 and permission of the instructor

Objectives:  For the student to
1. Understand the principles of the object-oriented model
2. Design classes using an object-oriented language
3. Be able to critically evaluate the object-oriented model

Approach: This course will engage the students with the fundamentals of the object-oriented par-
adigm. It will be an analytical and evaluative approach. Three languages, C++, Smalltalk, and Ada
95, will be used to implement this paradigm. Students will desi gn extensive class libraries for use
in the Hope College Computer Science curriculum. They will also be required to do outside read-
ings and make presentations about aspects of object-oriented computing.

Textbook: An Introduction to Object-Oriented Program ming by Timothy Budd

Exams:There will be a take-home midterm exam.

Programming Exercises: There will be a programming exercise assigned in each of the three lan-
guages, C++, Ada 95, and Smalltalk.

Project: Teams will complete class libraries for the major class project which will be due at the
end of the semester. These will be implemented using C++.

Reports: Each student will prepare and deliver a report on a topic related to object-oriented com-
puting. The report will require the reading of at least one paper on the topic. These reports are to
be at least one-half hour in length and will be presented during the last three weeks of the semester.

Grading:The grading criteria will be as follows:

Midterm Exam 20%
Programming Exercises 20%
Class Project 40%

Presentation 20%



CSCI 495 - Object-Oriented Programming
Program Assignment 2

Implement a set class in Ada 95. This class represent a set of Ada strings. This class should imple-
ment the following methods:

Make the set empty

Test the set for empty

Insert a string into the set

Remove a string from the set

Print the set, one string per line
Test a string for inclusion in the set

You are to construct three files for this assignment. Files set . ads and set . adb will contain
the specification and body of the package representing the class. In addition, you are to write a file
testset.abd which will be a main program to test your implementation of sets. Your main
program must do the following:

Read a sequence of strings from the file testinsert . dat and place the strings into a set
which is initially empty. If a duplicate string is read, a message should be printed alerting the
user that the string is a duplicate and the program should not attempt to insert it.

Next a sequence of strings is read from the file testremove . dat. Each of these strings is

removed from the set as it is read. If a string is read which is not in the set, a message to that

effect must be printed and the program will not attempt to remove the string.

After both files are completely read, the final set will be printed.

The main program should declare a single object of class set and process that set by calling appro-
priate procedures and functions.

Attach your three files to an email message and send to “dershem” before 23:59 on October 5,
1995.



Chapter X
The Object-Oriented Model in Ada 95

The Ada 95 revision of the Ada programming language provides complete and extensive ob-
ject-oriented capabilities. In this chapter, these capabilities are described and illustrated.

X.1 Overview

One of the major objectives of the Ada 95 revision was to include a full implementation of the
object-oriented model. Ada 83 included some features of the model such as encapsulation through
packages, type extension of operations through the use of derived types, and static polymorphism
through overloading and generics. Those features commonly associated with the object-oriented
model that were not found in Ada 83 were type extension through the addition of data components,
dynamic polymorphism throughout the subclass structure, and visibility control that permits sepa-
rately encapsulated classes to share non-public data and operations. All of these features have been
included in Ada 95.

Another objective of the Ada 95 revision was to maintain the fundamental approach and struc-
ture of the Ada language. This objective has had a major impact on the implementation of the ob-
ject-oriented paradigm in Ada 95. Class inheritance is implemented as a natural extension of
derived types while encapsulation and visibility issues are handled under the package structure of
Ada 83.

The remaining sections of this chapter describe the complete implementation of the object-ori-
ented paradigm in Ada 95. In doing this, we do not distinguish the newly added features from those
that were present prior to Ada 95.

X.2 Classes and Methods

In Ada, there is no distinction between a type and a class. This unifies the two concepts and
makes the object-oriented model a natural extension of the Ada implementation of the Ada model.
If a class is a type, then an object is any instantiation of that type. Therefore, objects can be
created in two fundamental ways: by declaring a variable and by dynamically allocating an object
of the given type by means of a new statement. The object created by variable declaration will be
referred to by the name of the variable. The dynamically-allocated object is referred to by means
of a pointer.
The data components of a class are defined as record components. Since the class is therefore
a record type, each object of that class contains every data element of the class. Consider, for ex-
ample, the class Fraction defined by
type Fraction is record
numerator : integer;
denominator : positive;
end record;
This is a standard record type definition in Ada, but it also serves to define a class. Objects of type
Fraction can now be instantiated in the following ways:



f : Fraction;
fp : access Fraction;

fp = new Fraction;

In this case, both £ and £p.all are objects of class Fraction.

Methods of an Ada class are procedures or functions that are declared in the same compilation
unit as the type declaration for the class and have parameters and/or a return value belonging to the
class. Unlike other languages such as C++ and Smalltalk where methods belong to an object syn-
tactically, in Ada they belong to a class. There is no object specified as the receiver of the message
calling the method, and therefore, there is no special syntax used to differentiate a receiving object.

Commonly, the compilation unit containing the definition of a class is a package. The standard
visibility control mechanisms of the package therefore apply, permitting the complete specification
of a class structure to be hidden through use of the private specification.

For example, the specification of a package defining a few useful functions for the Fraction
class and prohibiting direct access to the data of the class is shown in Figure X.1. The procedure
Print_Fraction muhhcﬁnwﬁonasFloatmenm&mdmﬁbkwsFractionskmeﬂwybom
have Fraction parameters and they are declared in the same package as Fraction. The func-
tion Make_Fraction isa method of Fraction because it has a Fraction return value. The
overloaded operator * is also a method of Fract ion.

One interesting possibility of the Ada specification of methods is that one function or proce-
dure might be a method for more than one class. This will only be possible if more than one class
is defined in the same package as a procedure or function which includes both classes among its
parameters and return value. Standard object-oriented convention keeps the number of classes de-
clared in each package at one, so this situation will not usually arise.

It should be noted that the encapsulation unit (in our case Fraction _pack) and the class
(Fraction) are separate entities and have distinct names. A method call in Ada is no different
from any other function or procedure call. For example, three of the four methods of class Frac-
t10on would be called in the following statement

Print_ Fraction(fl + Make_ Fraction(6,17));



Figure X.1 Definition of class Fraction

package Fraction_pack is
type Fraction is private;
function Make_Fraction(num, den : in integer) return Fraction;
procedure Print_Fraction(F : in Fraction);
function asFloat(f : in Fraction) return float;
function "*"(fl, f2 : in Fraction) return Fraction;
Fraction_Error : exception;
private
type Fraction is record
numerator : integer;
denominator : integer;
end record;
end Fraction_pack;

package body Fraction_pack is
package Int_IO is new Integer_IO(integer); use Int_TO;

function Make Fraction({num, den : in integer) return Fraction is
f : Fraction;
begin
if den > 0 then
f.numerator := num;
f.denominator := den;
elsif den < 0 then
f .numerator := -num;
f.denominator := -den;
else
raise Fraction_Error;
end if;
return f;
end Make_Fraction;

procedure Print_ Fraction(f : in Fraction) is
begin

put (£ .numerator, 5) ;

pae{"“/");

put (f£.dencminator, 5) ;
end Print_Fraction;

function asFloat(f : in Fraction) return float is
begin

return float (f.numerator)/float (f.denominator);
end asFloat;

function "*" (fl : in Fraction; f2 : in Fraction) return Fraction is
result : Fraction := (fl.numerator*f2.numerator,
f1l.denominator*£2.denominator) ;
begin
return result;
end u*n;

end Fraction_pack;



X.3 Inheritance

X.3.1 Derived Types and Type Extension

A limited form of inheritance is available through the use of derived types. The class of the de-
rived type may then inherit the methods of its parent class, override them, or add new methods not
present in the parent type. Figure X.2 contains an example that illustrates all of these.

In this example, the class Human is derived from class Mammal. The Human class actually
includes four methods. The procedure blood is inherited from Mammal and does not appear in the
definition of Human. Procedures speak and give_name override the procedures of the same
names in Mamma 1. Function get_legs is a method that is not inherited at all from Mammal but
is defined for the first time in class Human.

The overridden methods from Mammal are still inherited by Human, but they can only be
called by type-casting a Human into a Mammal. Consider the following:

h : Human;

speak(h); -- this calls speak from Human
speak (Mammal (h)); -- this calls speak from Mammal

You will notice that the give_name procedure for class Human actually calls the Mammal
give_name by type-casting its Human parameter to class Mammal.

Visibility is also an important consideration here. If Mamma l had been aprivate type, then
Human would not have had access to the component names. This issue can be addressed through
the use of child units as we will see in Section X.4.

Although the use of derived types for inheritance permits extension of the methods, this form
of inheritance is limited by having no capability for extending the data of the class by adding to its
record structure. In order to make this extension of the data of a class possible, Ada introduces the
tagged type.



Figure X.2

package Mammal_Pack is
type Mammal is record
name : String(l..20);
legs : Natural := 0;
end record;

procedure blood(m : in Mammal) ;

procedure speak(m : in Mammal) ;

procedure give_name(m : in out Mammal; mname : String) ;
end Mammal_Pack

package Human_Pack is
type Human is new Mammal;

procedure speak(h : in Human) ;
function get_legs(h : in Human) return Natural;
procedure give_name(h : in out Human; mname : string) ;

end Human_Pack;

package body Human_Pack is
procedure speak(h : in Human) is
begin
put_line(h.name & "says 'hi'");
end speak;

function get_legs(h : in Human) return Natural is
begin
return h.legs;
end get_legs;
procedure give_name(h : in out Human; mname : String) is
begin
give_name (Mammal (h) ,mname) ;
h.legs := 2;
end give_name;
end Human_Pack;



X.3.2 Tagged Types

The major limitation of derived types with respect to the object-oriented inheritance model is
the apparent inability to extend the data of a class. For example, suppose we wish to include in the
Human class that was derived from Mammal, an additional data field called IQof type Natural.
This is not possible through the use of the derived type feature.

Ada includes the capability of extending the data of a derived type by adding new data elements
beyond those present in the corresponding base type. This is done by declaring the base type to be
tagged. For example, to accomplish our goal of adding a data component IQ to Human, we could
declare the two classes as follows:

type Mammal is tagged record
name : String(l..10);
legs : Natural := 0;

end record;

type Human is new Mammal with record
IQ : Natural;
end record;

These declarations indicate that type Human inherits both of the data components of Mammal
(name and legs) and adds one new component, IQ.

Type conversion can be applied from the derived type to its tagged parent since it simply re-
quires that the surplus components be dropped. Conversion from tagged parent to derived type re-
quires that the additional components be specified, however. Consider the following example
illustrating conversion in both directions:

ml : Mammal ("mammalname", 20
hl : Human ("Humanname",2,120);
m2 : Mammal;

h2 : Human;

m2
h2

Mammal (hl) ;
(ml with IQ=>30);

Inn

The conversion from hil tom2 is standard type conversion with m2 taking the Mammal subset
of data elements from h1. The conversion fromml to h2 requires the definition of all components
that are in the subclass but not in the base class which is the source of the conversion.

The derivation of subclasses through the use of tagged types can be carried out to multiple lev-
els. For example, suppose we have a new class, Student, that is derived as a subclass from Hu-
man. The class Student will add some data components such as school and
year_in_school. The class Student is then declared by:

type Student is new Human with record
school : String(l..20);
year_in_school : Positive;

end record;

The data belonging to each of the three classes is illustrated by Figure X.3. Each new derived type



may, of course, provide additional methods as well as additional data, through the normal derived
type facility.

Special consideration is given to tagged types when they are private types as well. As usual,
private tagged types have their components hidden from external units. It is required, how-
ever, that all types derived froma private tagged type be private as well. In the above Mam-
mal/Human/Student example, Mammal could have been declared as a private tagged
type as follows:

type Mammal is tagged private;
private
type Mammal is record
name : String(l..20);
legs : Natural;
end record;

Then Human must be declared as a private extension of Mammal by
type Human is new Mammal with private;

private
type Human is new Mammal with record
IQ : Natural;
end record

In this case, all components of Mammal are inherited by Human, so within the package where Hu-
man is defined, references to any of the components of Mammal are valid. Therefore, inside the
package containing the definition of Human, we can write

h : Human;

h.legs := 1;
and the reference to data component legs, defined in Mammal, is legal. A reference toh as a
Mamma 1, however, would not permit direct reference to its data components, since the Mammal
components are private to the package in which Mammal is defined and not accessible in the pack-
age where Human is defined. Of course, this would not be the case if both Human and Mamma 1l
were defined in the same package, but this is not considered good object-oriented practice. There-
fore, if the two classes are defined in separate packages,

Mammal (h) .legs := 2;

is illegal inside the package where Human is defined.



Figure X.3

Mammal Human Student
name name name
legs legs legs
IQ IQ
school

year_in_school

X.3.3 Visibility and Child Units

The standard practice in Ada is to declare one class per package. One difficulty with this ap-
proach is that in order to maintain the encapsulation associated with the object-oriented model, the
class should be declared as a private type. This means that the data of one class is not visible to the
methods of any other class.

As an example of this restriction, consider the classes declared in the preceding section that in-
clude Mammal, Human, and Student and assume that each is declared in a different package.
For example,

package Mammal_pack -1
type Mammal is tagged private;

end Mammal_pack;

with Mammal_pack; use Mammal_pack;
package Human_pack 1is
type Human is new Mammal with private;

end Human_pack

with Mammal_pack, Human_pack; use Mammal_pack, Human_pack;
package student_pack 1is
type Student is new Human with private;

end Student_pack;

Now, since the data components of Mammal are defined in the private section of
Mammal_pack, no method of Human can directly access them. What we need is the ability for
the package of the subclass to access the private section of the package where its parent class is
defined.

This capability is provided in Ada by means of child units. When a package is a child unit of
another package, it makes the parent’s private declarations visible within the private section of the
child package, which includes the body of the child package.

One package is declared to be a child of another through its name. If the parent package has
name P, for example, naming a package P.C would make it a child package of P.This naming
convention can be carried out to multiple levels. For examples, a package name P . C .G would be
a child package of P . C.



Child packages are very useful for providing the appropriate visibility for subclasses. In the ex-
ample above, class Human could be declared in a package named
Mammal_ pack.Human_pack and class Student in
Mammal_ pack.Human_pack.Student_pack. Then all member functions of class Human
could access name and legs, private components of Mammal that are inherited by Human.
Likewise, Student could access all private elements of both Mammal and Human.
Although type extension and child packages are unrelated concepts, the first having to do with
inheritance and the second with visibility, they are often bound together as in our Mammal /Hu-
man/Student example. By always defining a subclass in a package which is a child of the pack-
age defining its parent type, we ensure that all private elements of the parent class are visible to the
child class.

X.3.4 Abstract Types

Some classes exist only to provide a base from which other classes can inherit. Such classes
never have any objects instantiated directly, but rather exist to have derived classes that will have
instantiations.

In Ada, this property can be enforced by making the class an abstract type. As an example, the
class Mamma 1, which was defined earlier, could have been declared as an abstract type. This can
be done by the following declaration:

type Mammal is abstract tagged private;

Class Mammal exists only so other classes can inherit data elements name and legs, and proce-
dures blood and give_name. No objects should ever be instantiated of type Mammal. Also,
note that the procedure speak is not intended to be inherited, but should be redefined for each
class derived from Mammal. Therefore, it is not necessary to actually define speak in class Mam-
mal. This can be indicated by declaring the procedure speak to itself be abstract:

procedure speak(m : in Mammal) is abstract;

The astute reader will notice that it appears that speak would not need to be defined at all in Mam-
mal since it is never inherited. We will see later, however, how abstract procedures can be useful
for dynamic binding.

Our new definition of Mammal as an abstract class is now found in Figure X 4.

Figure X.4 Abstract Version of Mammal_Pack

package Mammal_Pack is
type Mammal is abstract tagged private;

procedure blood(m : in Mammal) ;
procedure speak(m : in Mammal) is abstract;
procedure give_name(m : in out Mammal; mname : String) ;
private
type Mammal is record
name : String(l..20);
legs : Natural := 0;
end record;
end Mammal_Pack



X.4 Controlled Types

Ada provides the ability to automatically execute code when objects of a class are created or
destroyed, similar in function to the constructor and destructor of C++. In Ada, this is handled
through special procedures, Initialize and Finalize, that are defined in a built-in abstract
class called Controlled. Hence, any class for which Initialize and/or Finalize are de-
fined must be a derived class of Controlled., insuring that Initialize will be called at ob-
ject creation and Finalize on object destruction.

A third procedure, Adjust, is provided in class Controlled to facilitate the sequence of
creation and destruction that needs to occur during assignment.

For any class that is derived from Controlled, the procedure Initialize iscalled when-
ever a new object is instantiated. The Initialize procedure of a Controlled type is called
in the following situations.

|. When a variable of the type is declared by a declaration which does not include an initial
value. '

2 When a variable is declared to be of a composite type which includes the Controlled
class in its definition. This inclusion may be either direct or indirect. Again, if the Controlled
object or any component containing it is initialized in a declaration, Initialize will not be
called.

3. When an allocator is called by a new statement for an object of the Controlled class or
a composite object containing such an object. Again, if an initial value is specified for the object
in the allocation statement, Initialize will not be called.

If a Controlled class contains objects that are themselves Controlled, the Initial-
ize procedure for the contained objects are called before the containing objects’ Initializes
are called. This calling order is illustrated by the three Controlled classes defined in Figure
X.5. When an object of class Parent is declared, the Initialize for Childl is called first
since it is a component of Parent. The Initialize for Child2 will not be called until the
third statement in Initialize for Parent where the allocator for Child2 is executed.

The Finalize procedure of a Controlled class is executed at the time an object of that
class ceases to exist. For declared variables, this is when the execution block containing the decla-
ration is exited. For dynamically allocated objects, it is at the time of deallocation. A Finaliza-
t ion procedure is usually provided to free storage that has been allocated to an object that would
not be deallocated by the normal deallocation of the object, such as storage referenced by the ob-
ject’s pointers.

A further example of Initialize and Finalize is found in Figure X.6. A List class is
defined in this Figure. Note that the list includes both a head and tail pointer. Initialize sets
both pointer to null while Finalize frees up all of the nodes in the list before the List itself
is deallocated.

i



Figure X.5
with Ada.Finalization; use Ada.Finalization;

package Test_Init is
type Childl is new Controlled with private;
type Child2 is new Controlled with private;
type Parent is new Controlled with private;
private
type Childlptr is access all Childl;
type Child2ptr is access Child2;
type Childl is new Controlled with record
Data : Integer;
Sibling : Child2ptr;
end record;
type Child2 is new Controlled with record
Data : Integer;
Sibling : Childlptr;
end record;
type Parent is new Controlled with record
First : aliased Childl;
Second : Child2ptr;
end record;

procedure Initialize(Cl : in out Childl);

procedure Initialize(C2 : in out Child2);

procedure Initialize(P : in out Parent);
end Test_Init;

package body Test_Init is
procedure Initialize(Cl : in out Childl) is
begin
Put_Line(“Childl Initialize"”);
Cl.Data := 1;
Cl.8ibling := null;
end Initialize;

procedure Initialize(C2 : in out Child2) is
begin

Put_Line(*Child2 Initialize”);

C2.Data = 24

C2.8ibling := null;
end Initialize;

procedure Initialize(P : in out Parent) is
begin
Put_Line(“Parent Initialize”);
P.First.Sibling := P.Second;
P.Second := new Child2;
P.Second.Sibling := P.First’Access;
end Initialize;
end Test_Init;
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Figure X.6

with Ada.Finalization; use Ada.Finalization;

package List_Pack is
type List is new Controlled with private;
procedure Add_to_Front(L : in out List; I : in Integer);
procedure Add_to_Rear (L : in out List; I : in Integer) ;

function “+”(First, Second : in List) return List;
function “="(First, Second : in List) return Boolean;
procedure Put(L : in List);

private
type Node;

type Node_ptr is access Node;
type Node is record
Data : Integer;
Next : Node_ptr;
end record;
type List is new Controlled with record
Head : Node_ptr;
Tail : Node_ptr;
end record;
procedure Initialize(L : in out List);
procedure Adjust(L : in out List);
procedure Finalize(L : in out List);
end List_Pack

package body List_Pack is

procedure Initialize(L : in out List) is
begin

put_Line(“Initialize called”);

L.Head := null;

L.Tail := null;
end Initialize;

procedure Adjust(L : in out List) is

Temp : Node_ptr := L.Head;
begin

Put_Line(“Adjust Called”);

Put (L) ;

L.Head := null;
L.Tail := null;
while Temp /= null loop
Add_to_Rear (L, Temp.Data) ;
Temp := Temp.Next;
end loop;
end Adjust;

procedure Finalize(L : in out List) is
procedure Free is new
Ada .Unchecked _Deallocation(Node, Node_ptr);
Temp : Node_ptr := L.Head;
Save : Node_ptr;

begin
pPut_Line(“Finalize called”);
Put (L) ;
while Temp /= null loop
Save := Temp;

L9



Temp := Temp.Next;
Free(Save) ;
end loop;
L.Head := null;
L.Tail == mull;
end Finalize;
end List_Pack;

X.4.2 Overriding Assignment

%, "

An assignment operator “:=" is defined in Figure X.6. When the assignment
Tl a2 G2
is executed, the components of L2, Head and Tail, are copied to the corresponding components
of L1. This means that L1 points to the same list as L2 rather than a copy of the list. Usually, this
is not the copy that we want since a later change to L2 would also result in L1 being modified.

Ada provides the Adjust procedure in the Controlled abstract class for just this purpose.
Adjust is automatically executed during each assignment for a Controlled class. The assign-
ment operation also results in a Finalize being called. The sequence of operations for the state-
ment

Ll = T2
is as follows:
1. Finalize(L1) is called.
2. Components of L2 are copied to L1 as in the default assignment.
3. Adjust(L1) is called

As a result of this sequence, the Adjust procedure is written under the assumption that the
components themselves have already been copied. Any further adjustments must be made by the
Adjust procedure.

The Adjust procedure shown in Figure X.6 implements assignment for the List class of the
preceding section. Since the two components, Head and Tail, have already been copied prior to
the call on Adjust, the procedure assumes that these point to the List that is on the right-hand
side of the assignment. Procedure Adjust creates a copy of this list, and sets Head and Tail to
point to the appropriate places in this copy.

X.5 Polymorphism and Dynamic Binding

Polymorphism is achieved in Ada through the classwide types. These types represent all types
in a subclass hierarchy and permit reference to all types in the hierarchy. Classwide types also per-
mit the dynamic dispatching of a subprogram call.

X.5.1 Classwide Types

Every tagged type has a corresponding classwide type. The classwide type of type T is written
T’ class. The type T’ class permits the representation of any type in the subclass hierarchy of
T. For example, suppose tagged type T has the following subclass hierarchy:
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Mammal
Human Canine

Dog Wolf

Then all five of the types have a corresponding classwide type. The following table indicates the
range of representation of each classwide type.

Classwide Type Type Represented

Mammal’class Mammal, Human, Canine, Dog, Wolf
Human'’'class Human

Canine‘class Canine, Dog, Wolf

Dog'class Dog

Wolf’class Wolf

Classwide types can only be used in certain restricted contexts. Variables may be declared to
be of a classwide type only if an initial value is provided in the declaration. For example,

X : Mammal’class

would be illegal whereas

d. ¢ Dogh

X : Mammal’‘class := d;
is legal. This is the case because an object of classwide type must always belong to one of the types
it can represent. Once an object is bound to that type at its creation, it may not change. Therefore,
though x above is of type Mammal ' class, its tag indicates it is a Dog and that cannot be modi-
fied once the binding takes place.

Variables which are of access type to a classwide type can point to different objects and there-
fore point to objects of different types at different times. Consider the following code fragment:

type mamptr is access Mammal'’class;
mp : mamptr;

mp := new Human;
mp := new Dog;

will result in mp pointing to a Human object first and then a Dog object.

X.5.2 Classwide Subprograms

A classwide subprogram is any procedure or function that has formal parameters that are of a
classwide type. The actual parameters for such a subprogram may be of any of the types represent-
ed by the classwide type or belong to the classwide type itself.

Consider the function same_species defined by

function same_species(ml,m2: Mammal’'class) return Boolean is

begin
return ml'tag = m2'tag;

s



end same_species;

This function is a classwide subprogram because its parameters are of classwide type. It also intro-
duces the tag attribute of an object of a tagged type. Two objects whose tags are the same belong
to the same type within the classwide type since their tags identify their type.

The function same_species can be called with actual parameters that belong to any of the
types represented by Mammal ‘' class. For example, if variables are declared by

type mamptr is access Mammal’class;

d : dog;

X := Mammal‘class := d;
h : Human;

m : mamptr;

Then all of the following calls are legal:

. same_species(d, h)
. same_species(x,h)
.. same_species (m.all, x)

The first two calls will return false while the result of the third call depends upon the type of the
object to which m points at the time of the call.

X.5.3. Dynamic Dispatching

While classwide subprograms provide some degree of polymorphism, another approach is dy-
namic dispatching. This occurs when a single call to a subprogram may be dispatched to multiple
subprograms, depending on the tags of the actual parameters. Classwide subprograms have formal
parameters of classwide types whereas dynamic dispatching utilizes actual parameters of classwide
types.

An example of dynamic dispatching appears in the following fragment:

m : mamptr;

speak(m.all);

Since there are speak procedures for both Dogs and Humans, the call to speak could actually
result in either of the two being called, depending on the tag of m. a1l at the time speak is called.

If there are multiple parameters of classwide type, the dispatching can be based on the combi-
nation of tags of the parameters. The return value of a function can also drive dispatching. For ex-
ample, suppose the following two functions are defined:

function create_mammal (name:string) return dog is
m : mamptr := new Dog;

begin
give_name (m.all, name) ;
return Dog(m.all);

end create_mammal ;

function create _mammal (name:string) return Human is
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m : mamptr := new Human;

begin
give_name (m.all, name) ;

return Human (m.all);
end create_mammal;

Then the call
m.all := create_mammal (“*Joe") ;

would dispatch its call to the appropriate create_mammal function, depending on the tag of
m.all.
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CSCI 383 Program Assignment 8 Due November 27, 1996
An Objective Look at Ada

You are to implement the five classes described below:

Class Date
Instance Variables: Month, Day, and Year
Instance Methods:
Set_Date (3 natural parameters plus the receiver)
Get_Month
Get_Day
Get_Year
Put

Class Transaction (abstract)
Instance Variables:  Date of transaction (Date)
Account Number (String(1..10))
Amount of Transaction (Money type = delta 0.01 digist 8)

Instance Methods:
Set_Transaction (3 parameters plus the receiver)
Get_Date
Get_Acct_Num
Get_Amt
Put
Class Check

Superclass: Transaction
Instance Variables:

Check number (Natural)
Payee (Unbounded_String)
Instance Methods:
Set_Check (5 parameters plus the receiver)
Get_Check_Num
Get_Payee
Put
Class Deposit
Superclass: Transaction
Instance Variables:

Branch_Code (String(1..5))
Instance Methods:

Set_Deposit (4 parameters plus the receiver)
Get_Branch_Code
Put



Class Account
Instance Variables: Balance (Money)
Name (Unbounded_String)
Transaction_List (linked list of all transactions)

Instance Methods Initialize (start balance at O and list as empty)
Finalize
Add_Transaction
Put (print all transactions in list ordered by date)
Get_Balance
Get_Name
Set_Name
Clear_Transactions (empty transaction list)

The files containing these classes along with a menu-based test program file should be submitted
as an attachment to an email message by 12:00 p.m. on November 27, 1996. No late programs
will be accepted, so turn in whatever you have by the deadline.



CSCI 383 Program Assignment 9 Due December 6, 1996
Merry Christmas to All

Santa Claus sleeps in his shop up at the North Pole, and can only be wakened by either all nine
reindeer being back from their year long vacation on the beaches of some tropical island in the
South Pacific, or by some elves who are having some difficulties making the toys. One elf’s prob-
lem is never serious enough to wake up Santa, so, the elves visit Santa in a group of three. When
three elves are having their problems solved, any other elves wishing to visit Santa must wait for
those elves to return after Santa has solved their problems. If Santa is awakened by both three
elves and the last reindeer returning from the tropics, Santa has decided that the elves can wait
until after Christmas, because it is more important to get his sleigh ready as soon as possible.

You are to solve this problem using Ada tasks. You are to create three task types, Reindeer, EIf,
and Santa. Define these task types and any other items you need in a package called Task_Pack.

In your main program, you will declare a Santa task and an array of nine Reindeer tasks. In addi-
tion, you will have in your main program a pointer to an EIf task and create a new EIf task every
time an elf has a problem. Your program will be menu driven and the menu presented to the user
will appear as follows:

Christmas Menu

1. Reindeer arrival

2. Elf has a problem

3. Check reindeer status

4. Check Santa status

5. Elves problems solved

6. Santa returns from Christmas delivery

7. Terminate program and all tasks

When selection 1 is made, the program should prompt the user for the reindeer number (1..9) and
keep reprompting until a valid number is entered. If the specified reindeer has already arrived, a
message should be printed and the menu reappear. When selection 2 is made, a new elf task is cre-
ated and that elf goes to Santa with a problem. When selection 3 is made, the locations of all nine
reindeer are reported. When selection 4 is made, Santa’s status (sleeping, solving, or delivering) is
reported and the number of elves currently waiting for problem-solving is printed. When selection
5 is made, Santa leaves the solving mode and returns to sleeping. When selection 6 is made, Santa
returns from delivering mode to sleeping. In the case of selections 5 and 6, if Santa is not in the
pertinent mode, a message is printed and the Menu reappears. When selection 7 is made, the pro-
gram and all tasks are terminated.

This program is to be submitted by email by 12:00 p.m. on December 6, 1996. No late programs
will be accepted, so turn in whatever you have by the deadline.



CSCI 383: Programming Languages
Fall, 1996
Course Syllabus

CSCI 383: Programming Languages - MWF 12:00-12:50, VZN B24

Survey of programming languages. Programming language syntax. Theory of computation. Control
Structures. Recursion. Language extensibility. Application languages. Applicative languages.
Object-oriented languages. Experience programming in Ada. Prerequisite: Computer Science 225.
Alternate years, 1996-97.

Objectives: Objectives are for the student to

. Know and understand the fundamental properties of programming languages.

.| Be able to effectively learn and utilize new programming languages.

.| Know the five major paradigms of programming languages and be able to use them.
. Be able to choose an appropriate language for a given application.

B W=

Text: Programming Languages: Structures and Models, 2nd Edition by Dershem and Jipping
Professor: Herbert L. Dershem / VW 220 /7508 / dershem@cs.hope.edu
Approach: Imperative and Concurrent/Parallel language features will be illustrated by the Ada
programming language. Students will program in Ada to gain experience with the various features.
Exicfricnce will also be gained in languages of other models including Scheme, Prolog, Smalltalk, and
Jav
Prerequisite: Computer Science 225
Exams: There will be three exams in this class, tentatively scheduled as follows:

1/ Exam 1 - September 27 in class

2. Exam 2 - October 30 in class

3, Final Exam - December 11 at 2:00 p.m.

Assignments: Frequent assignments will be given, including writing programs in the various languages.

Grading Criteria:

Exam 1: 10%

Exam 2: 10%

Programming Exercises: 45%
Homework: 15%

Final Exam: 20%



CSCI 383: Programming Languages

Fall, 1996
Course Content:
Date Textbook Reading Assignment
Aug 28 |1 Overview/History
Aug 30 [2.1-2.6 Preliminaries HW 1 due
Sep 2 3.1 Data Types
’ ; Program 1 (Ada)
Sep 4 3.2 Execution Units Eorcisan |0 p. 48
Sep 6 3.2-3.3 Exec. Units & Control Structures
Sep 9 4.1-4.2 Data Aggregates - Arrays
i Program 1 due
Sep 11 4.3-4.6 Other aggregates Program 2 (Ads)
! HW3 due
Sep 13 5.1-5.3 Procedural Abstraction L oints 10100151
Sep 16 5.4 Parameters
. ; Program 2 due
Sep 18 5.6-5.7 Functions and Overloading Program 3 (Ada)
Sep 20 Data Abstraction/Parameterization Lab Ex. 1-5, p. 172
Sep 23 Ada Packages and Generics
Sep 25 Critical Issues - No class
Sep27 |Exam 1
Sep30  {9.1-9.5 Functional Model i
ki Program 4 (Ada)
Oct 2 9.6-9.7 FP
Oct 4 10.1-10.2 Scheme
Oct 9 10.3 Scheme
Oct 11 10.4 Scheme HW6 due
Ada Journal due
Oct14  |12.1-12.2 Logic-Oriented Model uossg i eoms)

Program 4 due




Oct 16 12.2 A Pure Logic Language

Oct 18 13.1 Prolog

Oct 21 13.2 Prolog

Oct 23 13.3 Prolog Program 6 (Prolog)
Oct 25 X.1 Introduction to Object-Oriented Model

Oct 28 X.2 Smalltalk Syntax

Nov 1 Exam 2

Nov 4 X.3 More Smalltalk Program 7 (Smalltalk)
Nov 6 Y.1 Ada 95 and the OO Model Program 6 Due
Nov 8 Y.2 More Ada 95

Nov 11 [ Y.3 Still more Ada 95

Nov 13 |Y.4 Ada 95 ad nauseum 5;2222 i
Nov 15 17.1-17.3 Distributed/Parallel Model

Nov 18 | 17.4-17.6 More D/P Model

Nov 20 [ 18.1-18.2 Concurrent Units in Ada

Nov 22 | 18.3 More Concurrent Ada

Nov 25 |18.4-18.5 Still more Concurrent Ada Program 9 (Ada 95)
Nov 27 [ 18.6 Examples in Ada Program Assignment 8 due
Dec 2 Review and catchup

Dec 4 Review and catchup
| Dec 6 Review

Program Assignment 9 due




Hope College

Department of Computer Science
Holland, Michigan 49422-9000

(616) 395-7510

Copy

March 13, 1997

David R. Dietz

PWS Publishing Company
20 Park Plaza

Boston, MA 02116-4324
Dear David:

It was good to meet you in San Jose last month. Mike Jipping and I have completed the chapter
overview of the Third Edition of our textbook. As we discussed in San Jose, I am sending that to
you as an enclosure.

If you have any questions or need any further information at this time, please let me know

Sincerely,

Herbert L. Dershem, Chair



Programming Languages: Structures and Models, 3rd
Edition
Herbert L. Dershem and Michael J. Jipping

Chapter 1 - Introduction and Overview

This chapter is unchanged

Chapter 2 - Preliminary Concepts

This chapter is unchanged

Chapter 3 - An Overview of the Imperative Model
This chapter is unchanged except for the addition of features of Ada 95.

Chapter 4 - Data Aggregates
This chapter is unchanged except for the addition of features of Ada 95.

Chapter 5 - Procedural Abstraction

This chapter is unchanged except for the addition of features of Ada 95.

Chapter 6 - Data Abstraction

This chapter is unchanged except for the addition of features of Ada 95.
Chapter 7 - An Overview of a Functional Model

This chapter Chapter 10 of the Second Edition with no significant changes

Chapter 8 - Scheme: A Functional-Oriented Language

This chapter Chapter 11 of the Second Edition with no significant changes

Chapter 9 - ML: A Typed Functional Language
This chapter Chapter 11 of the Second Edition with no significant changes

Chapter 10 - Prolog and the Logic-Oriented Model

This eliminates the use of the LP language and introduces the Logic-Oriented model through Pro-
log. The coverage of Prolog is greatly expanded and improved over that in Chapter 13 of the Sec-
ond Edition.



Chapter 11 - Smalltalk and the Object-Oriented Model

This eliminates the use of HOOL and introduces the Object-Oriented model directly through |
Smalltalk. |

Chapter 12 - Java: An Object-Oriented Language

This is an entirely new chapter, replacing the Second Edition’s Chapter 16 on C++. It’s approach
is similar to that of Chapter 16.

Chapter 13 - The Object-Oriented Approach of Ada 95

This is an entirely new chapter.

Chapter 14 - An Overview of the Distributed Parallel Model
This chapter is unchanged from Chapter 17 of the Second Edition.

Chapter 15 - Concurrent Units in Ada 95

This chapter is an update of Chapter 18 of the Second Edition with modifications to reflect Ada
95.

Chapter 16 - Concurrent Threads in Java

This is an entirely new chapter.



