
DEFENSE AOVANCED RESEARCH FROJECTS AGENCY
37OI NORTH FAIRFAX DRIVE

ARLTNGTON, VA 2220.3-1-7 1 4

January 16, 1992

Herbefi L. Dershem
Department of Computer Science
Hope College
Holland, MI 49423

Subje.t : B.a..^. PrcFcre!
Use

-of
Ada, l,aboratories, and Visualization in the Teaching of Data Shuctu€s

LOSf, Z)

sIJTo, BAA 9I -I8

Dear Mr. Dershem:

I3:,:1T'.t:.:l.T:lT1T ,o]:"j:r:prr"l ,ubmittod in response t o tbe commerce Business Daitylssue or to Juty l99l tor a DARpA_sDonsored program of Curiculum Devglopment in SoftwaroEngineering and Ada, DARPA/CMO
-BAA

9l-i8.
-

Your proposal was evaluated in accordance with the cdteria set fofih in the announcement, and is
T:.:f.::i:r4

d.,_",yined-to.be a potential candidate for funding. Since it is not anticipeted that
i::.,-r:: li"::

*u, * sutticienr to suppod all such proposals, we are unable to be more specificar rne prcseot tlme. except to say that should your proposal then be selected for funding, you will
be contxcted by our Contmcts Mamge[Fnt Offic€.

Thank you for your participation in this procuement. your offorts in expressing the ideas and con_
cepts of your proposal arc apprcciated. We anticipate the publication ofi new, ida Under$aduate
Curdculum Broad Agency Announcement by the end of February. DARPA wishes to encourage
your psrticipation in '$is and dl fuiurc progruns

Dr. John F. Kramer
Program Manager
Software and Intetligent Systems Technology Office

cc: James M. Gentile

/
t - c

A. CoYer Page

Broad Agency Announcement 91-18
CURRICT'L'M DEVEITOPMENT IN SOFT'WARE ENGINEERING AND ADA

Calegory I Proposal

Proposal Title: Use of Ada, hboratories, and visualization in the Teaching of Data Structurcs
and Discrete Mathematics

Technical Point of Contacc Herbeit L. Dershem
Department of Comput€r Sci€nce
Hope College
Holand' MI 49423
(616) 39+7508
dershem@cs.hop€.edu

Administrative Point of Contact: James M. Gentile
Dean for the Natural Scieoc€s
HoP€ College
Ilolland, MI 49423
(6rq 394'7714

a"\
C{hb HopecoLLEGE DEAN FOR NATURAL SCIENCES

September 23, 1991

BAA #91-18
DARPA./SISTO
3701 North Fairfax Drive
Arlington, VA 22203-17 14

TO WHOM IT MAY CONCERN:

It is with significant enthusiasm and excitement that I endorse the ideas and
concepts presented by the Department of Computer Science at Hope College in
this proposal entitled "Use of Ada, I-aboratories, and Visualization in the Teaching
of Data Structures and Discrete Mathematics."

The program descdbed in this proposal is timely and innovative. It will allow
students to more easily bddge perceived disciplinary gaps and it establishes a firm
foundation oI connectedness for students studfng mathematics and computer
science. The property of connectedness in science and mathematics is crucial
because it prcvides the learner with a tangible means of knowing. The proposed
cu[icular endeavor is welcoming of sludents and it is understanding of the
variances in backgrounds that students bring v/ith them from high school. It is
designed to meet students 'Vhere they are" and help students to achieve their
fullest potential of unde$tanding.

Hope College is committed to support this program in every way. My office will
work with Professor Dershem in a coordinated fashion to insure prcgrammatic
success.

we are thanKul for the opportunity to submit this proposal and \re look forwald
to developing a vital program that will provide students with the tools necessary
for future success in computer science.

Sincerelv.

;h*'t
/ ,Aanes M.

L--/ I)ean fot
The Kenneth G. Herrick Professor of Biologr

JMG:b

HOLLAND, MICHTCAN 49423-369A / 616 394 7714

the Natural Sciences and

B. Description of the Project

Summary of Prcject

The propos€d project is for the development of a rew course in Data Stuctures that includes the
following features:

1. The use of Ada to aid in the development of the conc€pt of Abstract Data Types.

2. A taboratory component where students would meet in a laboratory s€tting orc€ a week to
carry out expedments in data structues.

3, The use of algorithm visualization and animation techniques for both clas$oom demonstration
atld laboratory activities.

4. The inlegration of discreie mathematics topics inlo the course' including graph theory and
recurenc€ rclations.

Current Situation

Hope college is a four-year liberal arts institutoo with enrollment ofapproximately 2,500. The
cotiege tras-traa a comiuter scienc€ depanment since 1974. The department Fesendy consilts
of four full-time faculty nembers, three of whom hold Ph.D. degrces in Compuier science. The
delartment graduat€d il majors in 1991 and will gnduate a similar number in 19921

The data structurcs course at Hope College is closely based on the CS7 course of ACM
Curriculum 78 Ul and CO2 cou$e of the ACM Liberal kts Curriculum [1U. It is taker by
Computer Sciencr majols in the sophomore year, with Induction !o Comput'er Scienc€ and
Computer Science tr as prerequisite clufses. Since 1985, data structures has been taught with
Modula 2 as the primary progratnming tanguage. Prior !o that Pascal was us€d. Beginning in
1990, the compuiu sciin-ce aepartnent Uegan a cunicular program that introduces the topics
commonly inciuded in a discrete shuctures course into the first four courses of the computer
science curdculum, one of which is the data structwes course. T'lle discrete structues couse'
which was taught within the mathematics department, n'as cons€quertly eliminat€d as a
requirement for the computer science major'

ProPosed Activities

The proposed project would seek to develop materials to suppon a couse in data shuctures that
*ould ose Adi as the implementation language, integrale disctete mathematics topics into the
cou$e, and provide laboratories that would engage the students in experimental work and
algorithm visualization- The Project Dircctor would produce, as a lesult of this Foject, course
m;terials including sy abus, a lab manual, Ada softwarc us€d in support of the laboratory, and

handouts supportilg the discrete mathematics comPonent of the course.

It is proposed that the course ard laboratory design be completed and supporting software
*ritteo during the sumruer of 1992, tlnt the course be taught and wdtten laboratory exercises
be produced during the Spring Semester of 1993, and that the filished lab manual ard a paper
describing the results of this curricular development be wdtter during the summer of 1993.

, Technical Approach and RatiorEle

l" Introduction of Ada as the primary language in a Data Structur€s cours€.

The use of Ada in the data structures couse has be€n pioneer€d by Feldman [9] and more
rec€ntly advocated by Silver [13]. The advantages of Ada as oudined in [10] include the
following:

l. Data abstraction is enhanc€d by the ability !o return any structurc as tlle result of a
function.

2. Packages allow for the implementation of ADTS along with the scparation of
specifi cation from implementation.

3. Pdvate typ€s enhance the ability to implement encapsuLation.

4. Genedcs enable the students to work at an higher level of abstraction in the
constuction of ADTS.

5. Exc€ption handling can be includ€d as an int€gral part of the ADT.

In addition, an eady exposure io Ada in the Computer Science curriculum makes that language
available as a tool in all later c.urses. In particular, Ada is aheady used as a primary language
in the programming languages and concurent systems courses' and its use in data structures
would ieduce the amount oi time needed in these later cnurses !o familiarize the students with
Ada, Furthermore, students would be morc likely to choose Ada in later courses where they
have a choice of which larguage to use.

2. Introduction of a liaboratory componed into tie data structur€s cou|se'

A significant amount of attention has been given in recent computel science curriculum studies
to G introduction of laboratory experienc€s Bl [14]' At gope College, we have already begun
efforts to inFoiluc€ laloratories into ttre fust two courses in the curiculum, that is, those that

arc prerequisites !o the data structues cou$e. Based on the success of those implementations
and-the recommendations of the ACM Curriculum committe€' we propor the ext€trsion of the

labontory approach to the data stlucturcs course.

4

The present data structures course meets for tirce hours of lecture per week. The pmpord
cours€ would meet for a two-hour laboratory in addition to the thre€ hours of lecture. The
number of credit houls for the course would be increased from thr€e to four. In the laboralory,
the students would be provided with a workstation and the activities would be specihed in a
written lab description and through verbal instructions from the instructor. The laboratory
activities would include, but not be limited to, the following:

Implementing applications in Ada using provided ADTS.

Conducting experiments through the observation of timings of various algonthms to
hypothesize or verify the run-time efficiency.

Obs€rvhg the change ia behavior in algorithms lvheo different data structures or different
implemeltations are us€d.

Analyzing th€ behavior of algodthms and data structures through the use of visualization
and animation software.

Illustrating and emphasirc mathematical mncepts through the use of computer
simulations.

3. The use of algorithm visualization rnd animation softwar".

We have already begun exploring the us€ of algorithm visualization and animation software in
laboratories at Hope College in the Introduction !o Compuier Sciencc course and in the
Algoritlrns course. T'his technique has been us€d with great success by others as wen [2] [12].

We propose integrating the use ofthis software to provide laboratory exp€dences and classrcom
demonstrations in the data structures couse.

Because visualiz:tion reveals pattems in the changing distribution of an array of values as they
are being sorted, it can aid students in doing in{epth analysis and comparison of sorting
algorithms. Complicated schemes for implementing balanc€d search trees can be understood
more cl€ady through gxaphics display and animation of the tse€ structures. Algorithms for
searching and performing computations on graphs can also be illustrat€d at the conceptual aIId
intuitive level through visualization techniques. For large data structures, graphical display of
statistical information can le.ad !o a better unde$tanding of the asymptotic behavior of
algorithms.

4, Inclusion of mathematics in the data structur€s cou$e.

Disdete mathematics plays an impofiant role in a data stuctures course. The approach we are
implementing for Foviding computer science studeots with an adequate background in discrete
mathematics is throush fte inclusion of the mathematics material in the fint four courses in the

computer science sequenc€, This has several advantages over the offering of a separate course
on disqete mathematics: (1) The mathematics that is needed in the computer science curriculum
is covered prior to or at fte same time as the computer science topic that ne€ds it; @) The
students learn the mathematics in the context of its application in computer scienc€, providing
additional motivation for leaming it; (3) The computer can be utilized as a tool to assist in
leaning the mathematics through computer simulation.

Previous Relate-d Work

Professor Dershem has been active in computer science curriculum development for more than
twenty yea$. His first activity was in the design of a course that combined the teaching of
statistics and computer scienc€ [4]. His work on that project was supported by a grant from the
National Scignce foundation and resulted in the publication of a laboratory manual for use in
such a course [5].

Professor Dershem was also funded by NSF for the development of a modular approach to the
teaching of inttoduclory computer scienc€ [6]. As a part of this project, two modules on
prcblom solving were produced [4 [8].

More rec€ndy, Professo! De$hem has co-authored a programming languages text that uses Ada
as the pdmary language for the discussion of imperdtive language c.ncepts [10]. This lext has
been used at Hope College for tlrc past four years in both its pre-publication and pubtished
forms.

Professor De$hem has also been active in cuniculum development and in the activities of the
Special Interest Grcup on Compuler Science Education (SIGCSE) of the ACM. He served as
program chair of the 1988 SIGCSE Symposium and edited the proceedings of that symposium
t91.

Facilities

Three computer network are in place on the Hope campus on which this project could be
implemented. The choice of the platform for these activities will be made based on the status
of these networlc at the time of implementation. The lhree netwolks, which we will call the
Sun, VAX, and PC networks, are described in the Appendix of this proposal. The college
already has the Verdix VADS Ada environment available on the VAX network. If the Sun or
the PC networlG are used for implementation, then Hop€ College will purchase a suitable Ada
elvironment for use on the chosen system,

If the vAx or PC networks are chosen for implementation, labs will me€t in a classroom set
up on campus that conains 28 Swan 386SX misocomputers that a.re on a local area network.
These computers are arranged in a clas$oom setting suitable for crnducting the lab described
in this proposal. Each of these sysiems also has communications capabilities with the vAx
network so that the use of either the PCs or the VAX call be implemented in this laboratory.

The Physics and Mathematics departments at Hope College rec€ntly rcceived a grant from the
NsF ILI program for the estabrishment of a labontory of 20 x-ieminals for the instruction of
elculus and physics. The exact nature of this laboratory has not yet been determined, but it is
possible that this laboratory, with the terminals connected to the Compuier Science department,s
Sun network, could be.used for the laboratory activities of this project.

The decision as to which facilities to use will be made after the specifications and availability
of the X-leminal laboratory have been determined. Algodthm visualization and animation
development software available on Hope Co ege systems includes GAIGS on pC systems and
TANGO on the Suns.

Bibliography

[1] ACM Cuniculum Committee on Computer Scienc€, Curriculum '78; Recommendations for
the undergraduat€ Fogram in computer scie,rce, CACM,22(3): 147-166, March 1979.
[2] Brown, M.H., Algorithm Aninutior, Cambridge, MA, MIT prcss, 1987.
[3] Denning, P.J., Comer, D.8., cries, D., Mulder, M.C., Tucker, A.B., Tumer, A.J., and
Young, P.R., Computing as a disciplirc, CACM,32(1):9-23, January, 1989.
[4] Dershem, H.L., A course on computing and statistics for social science , pruceedings of Dn
hnferer0e on Qnpurers in the Undzryraduate Currictla, At)allt^, GA, lgjL,
[5] Dershem, H.L., Computer Exercises for Elenv aty SraristicJ, Wentworth, NH, Compress,
lnc., 1979.
[6] Dershem, H.L,, A modular inhoductory compuier scienc€ caxw, SIGCSE Bullain,
13(l): 17-181, February, 1981.
[fl Dershern, H.L., UMAP Module 477: Compurer Problen So/yir,g, Cambridge, MA,
Birliauser Boslon, Inc., 1981.
[8] Dershem, H.L., UMAP Mdule 478: Iteration and Conputer Problen Soling, Cambridge,
MA, Birkhauser Bosion, Inc., 1981.
[9] Dershem, H.L. (ed.), Proceedings of thc Ninateenth SIGCSE Technical Symposiutn,
Association for Computing Machinery, 1988.
[10] De$hem, H.L. and Jipping, M.J., Programming l,onguages: Models and Structures,
Belmont, CA, Wadsworth Publishing Company, 1990.
[lU Feldman, M.8., Daa Abstattion with Ada, Reston, VA, R€ston Publishing Company,
1985.
[12] Feldman, M.B., Teaching data structures with Ada: an eight year pe$p€ctive, ,SfGelE-
Bul-ktin 23{1)391a0; trffit,-7991.
[13] Gibbs, N.E. and Tuck€r, A.B., Model curriculum for a lib€ral ans degrc€ in computer
scierce, CACM, 29(3):202-210, March, 1986.
n4l Naps, T.L. Algorithm visualization in computer scienc€ laboratodes, SIGCSE Bulletin,
22(1): 105-1 10, February, 1990.
[15] Silver, J-L., Using Ada to specify and evaluaie projects in a data structurcs cours€, SIGCSE
Buuetin, 23(l)1337340, March, 1991.
U6l Tucker, A.B. et al (eds.), Computing Curicula 1991: Repon of thz ACM/IEEE-CS Joint
Curriculum Task Force, New York, ACM Press, 1991.

Section C. Summary of Deliy€rables

1. I-aboralory Manual for Use in Data Structures Courue.

A laboratory manual suitable for use in conjunction with a data stuctures course will be
developed as a palt of this Foject. This manual will contain a descdption of at least 20
laboratory projects which can be carried out in a supervisei lab setting, or allematively, cao be
given as outside-of-class assignments, Thes€ laboratories will include developing applications
using prepaled Ada packages, experimental comparison of algodthms and daa structures to
observe arld analyze run-time behavior, computer simulations to illustrate mathematic€l conc€pts,
ard algodthm visualizations and anirnations. This laboralory manual will be published in a form
suitable for distribution to others interested in implementing a data structures laboratory and
provided upon rcquest for tho cast of production.

2. Ada packages to support the Data Sructures I:boralories.

A number of Ada packages will be constucted for use in tlle laboratories. These will include
packages for shcls, queues, s€quential lists, trees, and graphs. Thes€ packages will all be mad€
available to any interest€d parties for use in data stuctures or otlEr relevant courses.

3. Visualizations and.Animations.

All data structure and algorithm visualizations and animations developed for laboratories and
clas$oom demonstrations will be made available for us€ by others.

4. Paper for submissiot to SIGCSE Bulletin.

A description of the data structues course and the associated materials will be describ€d in a
paper submitted !o the SICCTE Bdkrtn and for presentation at the SIGCSE T€chnical
Symposium.

8

D. Summary of Sch€dule and Mileslon€s

All work on this project wil be carded out by the Project Dfu€ctor with Possible assistance-&om
a stud€nt, contingent on the availability of local fiaancial support for the stMert assisgnt.

Date Activi8

June 199 Design data strucilles cou$e aod liaboratories

July 1992 ftite Ada packages, data stucture visualizations'
and algodthm visualiztions/animations to support
laboratories

Jan-Apr 1993 Project Director will t€ach the newly designed
cou$e and concurrendy produce ttrc laboratory
manual

fvlay 193 Project Director wiU poduce the final bound hb
manual and ffiiic paper about project for SIGCSE

E. hopriefary Clains to R€sultc

The Project Dir-ector makes !o proprietary claidN to any rcsults or other artifacts supporting ard
necessa,ry for the use of this oourse.

10

F. Qualitications of Project Director
CIJRRICULUM VMAE

flerbert L. Dershem

Fiu,cation:
B.S. University of Dayton, 1965
M.S. (Computer Science) Purdue Uniyersity, 1967
Ph.D. (Computer Science) Purdue University, 1969

Experience:
Hope College, Assistant Professor, 1969-74

Associat€ Prcfessor, 1974-81
Prcfessor, 1981-present
Chair of Computer Science Depa.rtment, 1976-present

Oak Ridge National Laboratodes, Visiting Reserch Scientist, 1977-78
Boston Uniyenity Overs€as Program, Visiting professor, 1982-83

Honors gnd Awarh:
NDEA Fellow, Purdue Univ€rsity, 1965-68
Honeywell Corporation Fellow, Purdue Univenity, 1968-69
Project COMPUTe Awarde€, Dartmouth College, 1972
NASA/ASEE Summer Fellow, coddard Space Ftight Center, 1926
Oak Ridge Associated Universities Summer Fellow, 1977

Gtants:
CGdirector, 'Infioduction of the Computer i.I the Statistics Cuniculum" , NSF Offic€ of
Computing Activities, 1971 -73

Director, "A Modular Approach to the Intoductory Course in Computer Science', NSF
Local Course Improvenent Program, 19?8-80

Co-Dir€ctor, "A Micrccomputer hboratory for use in Teaching Statistics', NSF
Instructional Scientific Equipment Program, 1979-80

Director, 'CSNET Membership in Support of Computer Science Res€arch", NSF RUI
Program, 1987-90

Publications: (23 totat, those p€rtinent to this project listed in Bibliography)

Other major sowces of support: None

Related prcp1sals Wnding: Norle

l l

G" Budget

JuneJuly 1992

May 1993

Total R€quest

Project DLector's Salary
@/9 acadernic year salary)

B€nefits for Project Dircctor
(30% of sarary)

hoject DL€ctor's Salary
(1/9 academic year salary)

B€oefits for Proj€ct Dirccto(
B0% of ulary)

$11,800

$ 3,540

$ 5,900

$ 1,70

$23,010

A Hope Co ege con&ibution will be providing 1/3 release time for the proj€ct Dbeclor during
th€ Spring 1993 senests while he is teaching th€ course 8nd witing th€ laboratory manual.
The approximate amount of that contsibution would be l/6 of the hoject Director'J academic
year salary which would be $8,800 based on his 1991-92 salary. In addition, all hardware and
softwarc n€€ded b implement this project wil be provid€d by Hope Co[ege.

t2

II. Appendix - Descriptiotr of Hope Couege Comput€r Networks

Computer Science Department Sun Network
Machine/Part

Sun 4/360
Sun 4/470
(2) Sun 4/40s
(8) Sun 4/60s

(3) Sun 4/65s
Sun 4/75
(32) INMOS Tr"anpute$

Peripherals

32 MB memory, 688 MB disk,24o0 baud modem
32 MB memory, 669 MB disk
12116 MB memory, 207 MB disk, 3.5', floppy
16 MB mernory, 100 MB disk, 3.5" floppy, GX graphics
coProcessor
16 MB memory, 100 MB disk, 3.5" floppy
20 MB memory, 200 & 480 MB disk, 3.5" floppy
Parallel processing units housed in Sun 4/470

I-ab software includes standard distributed sunos/unix software. This includes a distribution
of Sun's Openwindows, which is a ve$ion of the X windowing system. In addition, several
packg€s have been purchas€d ftom various vendors including FrameMaker, SutrGKS,
SunPHIGS, Sunlink DM DECnet sutport software, Saber-C, DOS Windows, and Adobe
Ttanscript. INMOS languages and developm€flt software are available for the Tranputers, T.he
lab uses several public dornain software packages including TEX, EMACS , and DECnet utilities.

The lab's software ard hardware provide access to the Intemet through a collegerwned Merit
scP.

VAX Network

The coltege owns t\r,o VAX 4000 syslems which serves the entirc campus community for
academic, administrative, and library applications. This system is accessible from eieven
locations on campus which have a total of 144 stations that are Dubliclv availabte for student
access. In addition, there are mfiy other terminals available in offices and laboratories across
the campus.

A wide selection of software is available on the VAX syslems including the Verdix VADS
syst€m for Ada software development.

FC Network

There is a Novell loc€l area network in the buildiog complex where this Foject will be
conducted that connects 49 386SX systems through a crmmon file server. Twenty-eight of these
systems are located in a computer classroom that includes 9 Epson pli[ters, one Hp llserjet IIp
printer, and a projertion system,

13

June 29' 1992

Herb Dershem

I E ! q B 0 ! ! . u E

n-c6d Research Project Auard

4***,r"*

DAIE!

T 0 !

FRol ' l t

SUBJECT!

(evin Kraay

DeJense Adv

Congra tu la t i ons on you r app rova l f o r a De fense Adv 'nced Reser rch P ro jec t g ran i

i n i he aooun t o f t 23 'O1O fo r t he p ro jec t en t i t l ed "Underq radua te cou rse

Deve lopoen t i n so f t {a re sc ience and ADA ' "

Jhe accoun t nuober 5 -22655 has been ass igned to th i s g ran t ' P le rse uEe th i s

nuober fo r a l l expen5es a i soc ia ted $ i t h the 9 ran t '

U l i l l you p le45e send ne a copy o t t he budge t rnd Sec t i on C o f t he Techn ica l

nropo:at for thi6 grant' The iccount nuaber l i l l be rct iv' ted rhen thc budget

inforartion i5 receivod tnd €ntered into the Fin.ncial Record Syste'E'

The Drug -F ree l ro rkp lece Ac t o f 1 t88 requ i res Hope co l l ege to ce r t i f y t ha t $e

r , j i l l na in te in a d rug - f ree oo rkp lace ' Th i s ce r t i f i ca t i on took p lace on the

eDDl i ca t i on fo r t he NSF g ran t u ,h i ch you l , t e re iwa rded .

I t a l so requ i re5 the Co l tege to p rov ide to each e tnp lo) ' ' ee oo rk ing i t h e

Federa l l y sponso red p rog ran the co l l eqe ' s po l i cy on d rugs ' A coPy o f t h i s
po t i cy i s i t t ached fo r you r re fe rence .

P lease con tac t iDe i f you have any ques t i ons .

A n*u**ou DEPARTMTNT OF COMPUTER SCIENCE

August 13, 1992

Aagela M. Coonce
Grants Oftcer
Defense Adva.nced Research Projects Agency
Contracts Management Ofi ce
3701 North Faidax Drive
ArJington, VA 22203-1714

Dear Ms. Coonce:

This letter is to make formal the request that I made to you in a telephone co[ve$ation last
mon!n.

I request that the DARPA grant number MDA972-92-J-1030 to Hope College have its ter-
mina,tion date changed from June 18, 1993 to June 18, 1994. The reason for this request is
that due to the late date that I wa.s informed of the awarding of this grant, I lvas unable
to complete the activities of the grant originally scheduled for the summer of 1992, This
requires me to push the schedule of the grant bark one entire year. My schedule, a revised
version of that lound on page 9 of rny proposal, ie as follows:
Date Activity
Jan-Apr 1993 Project Director will tearh course using Ada and generate ideas

for laboratories.
May 1993 Design da.ta structures coume and laboratories.
June 1993 Write Ada packages, data structure visualizations,

and algorithm visualizations/animations to suppolt
Iaboratories.

Jan-Apr 1994 Prcject Director will ieach the newly designed
course and concurrently produce the laboratory
manual.

Ma,y 1994 Project Director will produce the final bouod lab
manual and write paper about project for SIGCSE,

If you have any questions about this request, please contact me so that we can discuss them.
Thank you lor a.11 of your help oo this matter. It has beeo a pleasure working with you.

Sincerely,

$--qfiJo.jL
Herbert L. Dershem

HOLLAND,MtCHtCAN,19423 1698/616 394-7510

M E M O R A N D U M

Date: August 19' 1992

To: Greg Olgers

fYom: Herb Dershem

Subject: Informatiotr for a trews rclease for a grant received recently

Greg,
H"ii it

"o*"
information about a grant that I rcceioed rccentlg' Giae me a call if you need

a d di,ti,o n al in lorm ati o n,

Hope College has received a grant for $23,010 from the Defense Advanced Research Projects

egeucy (OARPA.). The project director will be Professor l{erbert L Dershem, chairperson

otile tfope Cottele Computer Science Department. The title of the project is "Use of Ada,

Laboratories, aod Visua,lization in the Teaching of Data Structures n

The purpooe of thia project will be to introduce the uge of tbe Ada language into the Hope

College baia Siructures course through ihe inclueion of a la'boratory with the course' The

laboJory will make entensive use of Ada, aod will include the illustration of data structure

concepts ibrough the use of visualization and anima,tion. The Hope College Computer

Science Sun Workstation laboratory will provide the facilities for the laboratolies'

professor Dershem will first ofer the Data structures course using Ada in the spring 1993

semester. During the eummer of 1993 he will design the laboratories to be included in tbe

course. In ihe Spring semester of 1994 those laboratories will be conducted for the first time'

In the summer of 19-94, Professor Dershem will summarize his work in a scholarly paper aod

produce a laboratory manual tha,t cao be used at other imtitutioos'

Ada was developed in the late 19?0s at the initiative of the U'S Departmetrt of Defense'

The purpose was to save money my standa,rdizing Defense software development to one

language, DARPA funds the learning of Ada by students to encourage rnore widespread use

ol th" l*guug.. Professor Dershem' along with Professor Michael Jipping' has written a

programming languages textbook that is based on the Ada Ianguage

This is the fffth external graot received by Hope's Computer Science Department in the past

yea,r. Four ol these grants have been frorn federal agencies. In addition to this Srant from

DARPA, grants have also been received from the National Science Foundation and NASA'

A Hooe Colleqe
Departmerit o;f Comprlter Science
lJrollc;nd, Miahig on 49 4 2 2 - I O O O

(676, 394-7570

August 22, 1995

Mr. Edward Brown
DARPA Softwarc & lntelligent Systems Technology Office
3701 North Fairfax Drive
l'llinglon, V A 222n3 - l7 | 4

Dear Mr. Brown:

Enclosed you will find two copies of the final report for DARPA grant MDA972-92-J-1030. The
softwa& developed under this grant has b€en placed in the ASSET library at West Virginia Uni-
versity,

I appreciate the support I received for this project. I think that you will find the results to be use-
ful.

Please let me know if there is any other information 0tat I can Fovide for you.

Sincerely,

Heftert L. Dershem, Chair

Copy: Kevin KJaay
Enclosure: 2 final teports

A]

AdaVision and THREADS :
Algorithm Animations and Experimental Laboratories

for Teaching a Data Structures Course in Ada

Cheri J. Bowsher
Dept, of ComPuter Science

Saint Joseph's College
Rensselaer, IN 47978

Abstract
The overall goal of tbis ploject is !o continue the implementation of a laboratory
fs the daa srucn[cs course using Ada and algoritbm visualization and anination
techniques. The work dotre horo enhancos the cou$e and conribules to the lcartr-
ing success of enrollcd students. The 6rst half of the projoc! entided Adavision' is
an instuctional aid consisting of two BTt€€ algorithm animations. Thc s€cortd
half of the pmjcct describes a tool called TIIREADS, which is used to run experi-
B9trts otr Ada data structues in a labotatory setting.

Dmrick P. Brown
Dept, of Computer Science

Hope College
Ho[aod, MI49423

Herbert L. Dershem
Dept. of Computer Science

Hope College
Holland, MI 49423

INTORDUCTION

The overall goal of this project is to implement a labolatory for dre data sfuctures cou$e using
Ada, algorithm visualiation atrd animation techniques, and algorithm measuremont using a tool
caued THREADS. Manuals have been developed to be used by studcnts to guidc tlFir wo* in
the laboratory. The work done in this ptoject enhances the course a]ld contdbutes to the leaming
succe$s of the eNollod students.

Prcvious wolk on this project iocludes 6 completed algodthm arfEcations and a basis for the
THREADS plogrxm. The proviously qeated aniruatj :rs include linked list, in6x to postfix con-
version, binary tree insert and delete, AVL tree insc 's with rotations, splay ttee zig-zlg and
zig-zig rctations, and AVI- single and double rotatious. hevious work on TI{READS included
tho qoatiorl of the interface and fili]Camental program routirEs,

The philosophy used in developil; :he laborxtory maintains that individual laboratory sessions be
closed, usg Ada pacl.113s, involve algodthm measuement oxporimgnts, and make use of algo-
ridlm animation. A closod hboratory msans that collectively, all studonts have i scheduled time
to work in drc hb setti[g. 1^n insfir.l.]r is also presont nt this time to aid and dircl their work.
Many of d:e A:ir prckagos rlle ahcr:.lJ' developed, and a,.. packages thatdo not already exist can
be easily impleurented by rtudr'rls. Thus, morc datn sltucturos can be covered in thc coursg'
The animations help studc...s becorue morc familiar with algoritirxos and tho oxperinents allow
students to oxpedence differont quidities of the algorithms. This Paper focuses on tlte algodthm
animations and a tool used to run experiments on algorithms in $e laboratory.

LaboratorY ExPeriments: THREADS

Manv exDeriments that aro perfomred in tlle laboratolies involve rurming tests oo algodthms that

ffi;#ili-il;;il;riig ea" pu"tug"t' These tests prcduccd Esults that catr be measupd

;;;J;; Working in the lab gives sirdents the chance o be more directly involved in their

learning, incr€asing the amouot of information tbgy retain'

Somo of dle Ada packagos will be written by the students themselves' but mole aro plovided by

ii"-i,"ri."ai- r"irtlt ru-ay, the stodeots are i*posed to more dat'-structures and algorifiEs' stu-

a"rir
-*liitp"tJ

,ii"it time seeing and experiencing the effrcts of algoridms in,stead of actuallv

.oainn ,rt" if*-i rt-" ard conesponding-data sruitures' This should increase their ability to ana-

lvze tf,e effeclveness and/or efdciency of differctrt apProaches to a ptoblem'

Currently, experiments arE planned for tho following appUcations:
1) Big Oh Experiments
2) Compadson of difforcnt sorting algoridms
3) Binary soarch tee vs. AVL aoe
4) Hash collision handling
5) Big Oh cocfflcicnt evaluation

In oldgr to run thcsg fypos or expenEents in a laboraory setting, an apFopri&te tool is tleeded'

il;rn"d ;;;;;;ti!oiect consists of the development of such a tool' named THREADS'

THRBADS Cfest Hamcss for Repetitive Bxpedment! on Ada Data Structu€s) is o tool that can be

"*A
t ." ,iri, * Aata sEuctues and algolithms, reporting back I' Jhe user some type of tho

;;;;;;;;;,h" ;tt. The tcsts arc 'bl-ack box' prcgrams that atE implcmentcd sepamloly' and

may be t€sFd and run seParstely as well'

How the Student Uses TIIREADS

The basic iclea behind THREADS is ilustraled by the fotlowing chart

THREADS genorates a data set based on infoEration given by the user. This data sot is used by a

black box to run one expedmed Upon the black box's completion, it retums to TIIREADS the

samole size of the data sot and an integer measuremsnt of tic tost. The measur€Elont will be

Black BoxData Set

THREADS

included in a table that keeps track of each expedment the user runs'

Running THREADS bdngs up the interface shown in Figuo 12' All inf- ormation needed fol tho

data set is inDut io the apprcpnatg places by the user' The pararoeters the user nay designate are

as follows:
Method: The black box to use fo! the experiment
WJ," a fl", The named file where the data set is storpd lf no file is designated' a

temPorary dofault file will be used'
Wri

"
puti.tt The path o the directory wbele all data lnd files will bo wdtten'

ijt" nif"t ift" pu'rn *a name of a dita set ro be used rn place of a file genemted bv

THREADS.
Samole Size: The number of eleme ts in the data set'
iiliri" o-lt*u"Jtt, The statistical probabitty distibution used to generated the mndom

data set.
Sampie Orderl The €xtert of odering imposed on eloments in the data set'

rrr" a"i*Tt"ttingt at" for a 100 element, iomll "tely unsorted data set generated randomly from

a unifom rardom distsibution.

Method
i-h" blu"k bo* p.""rs is spawned by the THREADS process' When THRBADS executes s black

toi, it gtu"t O. lf*t bo; a data sst gener&ted by TIIREADS' It then waits for the black box !o

,"-iu* iVir* ,f," Uf*k box returns, iHREADS takss the data and wlitss it to the Table of Mea-

;;;;;. The black box rentms 2 integc$. Thc 6rst is the sizo oftho dsta set and the socond is

tlle tlgasurcment that dle black box rgtums'

The ncaning of the measuement Etumed by the black box will vary do-pending on which black

i"-
"

U"f"i-*". In some cases the molsurement may be the number ofcomparisons that were

oerfonned in a sort routine. In the csse of tho binary search Ee€ expedments, the measure'cent

[ot"*ntt ,tta uu"Iag" dcpth of E nodc in the l]:.e. In all cases, howover, tho mflsurement will be

a ion-negariue integit us;ful in analyzing thc effecdveness or effrciency of a.cjfiain dnra struc-

Jo" oi rrlo;trtrn foi a particular dati set. The Eeasw€rnents roturne'd ftom diffelent oxperiments

can then be compared against each other to aid the user's snalysis'

Write to File
The text field labeled..wdte to File:'' takes a name as input. If a name is speci.fied, the genomted

data set will be saved to a file wittr that narne in thc diFctory sp€cified in the "write Pathi' text

field. If no name is specifred. the data set will bs saved to a temporary filo'

Write Path
The "Wdte Path:" text field takes a path suing as itrpul THREADS will not operate until a valid
path is given. The path string nceds to be a path vhere the user has readanil write peroissions'

tgfff,{ps .enls ana wites oany data files' If it cannot I€ad alld w te its data" it will not work
plopedy. If the usor attempts to run a black box without suppling the writc path, a notice Fompt
wili appear aad noti$ the user to supply THREADS with the applopriate information'

: Sarp l e S i ze : lLasuret|lent

Figure 12

Use File
Tho "Use Filet' text field takes a stnng as input' This tcxt stdng must contairrlhe ontite path and

"r-" "i
O" Jtt"nt" ," be used. If a valid p;th and name is givcn' TIIREADS will uso this data

;;;;;;a;; i.srcad of generating a new data seL THREADS will use a specifed data set

;.;d ;;;;d;;w data se-t' Thercfire, if tho us* wishes to gene!"ate a new data set' the

strine in the "Use File" text field must be deleted'

Sample Size
frl"--u-pt" ,i"" n"ta auows tho usol to enter the numbq of eloments to be included in the data

*| t*gi"g no. f , 10000. The sample si:o may be changed by-using tho m- ouse to click otr the

oo]ao*? ,i,ro*r, ot ty manually enterirg the sizc into the toxt field' The default is 100 sloments'

Sample Distribution
Srffi;t"tb-i." t"dt"ates the typc of randomness in which the data elemcnts ar€ to be distrib-

uted" There arc six diffoFnt distributions to choose ftom'
1) Uniforil.
2) Exponeotial.
3) Normal
4) Ca,|x|ma
5) l'Jisson
6) ljinom:

f" th" ilght
"i

tl," - :e Distribution, there is a 'urttolr labeled 'Distdbution Paramete$" If this

i"*n ir""Li"t A
"

r,..,Jow panol with numbor flelds wi[appea! (Figue 13)'

(Figule 13)
With this distribution window Panel, the user can modify the distributions by changirg the parux!-

eters for each distribution

These distributions can be usod to ovaluate how the distribution of data can affoct diffelEnt data

structures. For nlost cases, Uniform distribution is sufficient. Futurg work on distributions

includos the dovelopmont of black boxes that fully utilize the Sample Distribution featue of

THREADS.

Samole Order
ii"]u--ol" -d"r."f"rs !o the deglee of oder the user would like i'. tho data set to be genemted

r!- ["_ _]OO, f00. A sa-oiple order of 100 means that 1007o of tho data will be ir increas-

il;il;;td* A sample order of -100 means that 10070 ofthe data is in decreasing sortcd

"tio-e-t-"pf" "tO"r
oi zero means that the data is in psrfcctly radom^order' Any value

i"i*Li-roo?a roo is acceptable. A value of 50 means that tlrc tust 5070 ofthe data is in

increasing sorted order, the r€rnainder is in nndom order'

Data Set
i-" drtu ."t i, g"n"ot"d based on the information from tlrc sample size, disaibution' and odor

n"far. m"
"f",i""u

ut" rando6ly generated to fulfill the uscr's requirements' A data set can also

"oto"-to- "
l-pon"A data set using the "Use Filej' tcxt field by supplying a path and name'

Table of Measurements
GI dutudutu ,.s m"y be saved in files dosigoated by the usor, exporimels may be rcpoated' The

o-Ui" ofIn"u*ut"rnltus ftom an experiment sessioir may also be savcd, so the usc! may come back

to rhe dsta at a later time to continue inalysis or even add to the pre-vious experiment rerord'

iaUt"r ote tuueO ty clicking tho right mouso button while on tho tablo' From the 'File' menu'

a-ft*r" tft" option :S"ue as.,-.' and a save window will appear' To load in a geviously saved table'

choose the option 'Opcn' ftom dre 'File' monu.

Run Experiment
When thc 'Run Experbre0a button is clicked, the datr set is genera@d and-wdtton to the apFo-

Driarc file, Next, the black box prosess is spawned and cxecuted' When 0te black box finishes' the

iample size and measurement are wdtten to the tlble of measuremcnts' If dre user has not pro-

uia"a THnSADS *irh the sppmpdate infomcri , the user will be notiied to do so and no

exDerimentwillberun.Iftheblackboxabortsorcrxhes,theuse!willbenotifedthattherewas
an-erro! in tho black box and no data will be wdtten !o thc tablo'

View Graph
Whentlre.ViewGraph'buttonisclicked,themeasurementscurrendyinthetablewillbeusedas
the coordinates for a graph. Graphs are g:rerated using 'xvgr' and may be created at any point ir

the expcriment session. Each griph is p'oduced in its own window with a unique title' which

allows for easy coDtparison bctween graphs.

Clear Table
The 'Cloar Tablo' butlon allows the user to clear the able at any point duling a TI{READS ses-
sion. This enables the user to stat a rrew sot of expedmcnts at any time. Whcn thc 'Clear Table'

buttor is clickod a p(olopt will appear asking if thcy really want to clear fte table' If "Clear
Table ' is selecte.d, the tablo wifl be cleated. If cancel is selecte4 dre usef, will be Etumed to

TIIREADS with no changes.

Coefficients

If the 'Coefficients' button i$ clicked, a small window with five buttons will appoar (Figue 14)'

The fivo buttons ar€ log(n), n, olog(n), n2, and n to soDo power' 'n' being the-sample size' If one

.i,rr"t" t"*"t it
"u"fJ,

* *rt t*u
"pp"ar

displaying ttre coefficients ofthat particular Big

Oh of tho data in the tablo' For example, if the data in the table is:

100 600
tf the n2 button is clickod the xlorB will appear displaying:

100 600 6.000000000E-02

This means that with n=100 and y=600, an expression of the form y=cnz would require c to be

;.OOOOOOOB-OZ. If this coef6ciont romains relitively constalt over many values of n' the function

rspresented is a good candidate for the big-oh function of the black box process'

Edp
Help may bo found both by clicking the 'Help' button on th€ TIIREADS- window, or by ptsssing

the irelp Ly on the keyboard" Tho buttor on the TIIREADS window witl open a pop-up whdow
ttrat contains complete help text. Pushitrg the 'help' key ol the keyboard will give a short sum-
mary of help for the spot on the window whele the cursor is pointing.

Ouit
If the 'Quit' button is clicked, a notice prompt will appear and ask if dle user rcally wants to quit'

If cancoi is selscted, tho user will be r€tumed to the main TIIREADS Fogram without any

changes. If 'Quit' is selectcd, THREADS will oxit and close all witrdows' Also when
ffnleOS ir qoit, oU temporary files will be doloted 8o no unwanted files remain in the specitred

Figute 14

wdte path dt€ctory.

THREADS T[torial
tr,"'"i'u'.utt*to;alprogamthatisincludedwifiTHREADS.Whenthisprogramuruna
i,lilirii"p-"* ,rttintpt'ays-oe compt"te tutotial toxt in s smoll'able alea" This window is sizod

*-,rtuiu-ii L prac.j noxt o tbe tifi.EAos window on the sarne screen fo{ easy rcfenonce

when working with TIIREADS.

For the Instructor

TIIRBADS is composod of 11 fles and a Makefile' The files and their conlents are as follows:
- --af,r"uOt,C,

Clgated by tho graphical ilFrface code geDeraor' Devcuido 3'0'1'

,r,*"ar-ui.ru pefinitions ofliuets used to roceive informstiol about the UII objocts'

tl[eads-ui.cc Sets up the intedace, and begins waiting for events to proccss'

,t""ua.-t*Ut."", Callback functions for thc various widgets on the interface' Also
contains any auxiliary furctions needed by TIIREADS'

threads.info: Contains the help text rotieved by presing the "I{elp" key on the

keYboard"
longhelp.info: Contains tho completo help text displayed in the THREADS help

wirdow.
Cont&ins the gaphical data for rhe THREADS icon.
Contahs the gnphical data fo! tho TIIREADS icor mask'
Contains the prefcrences fo! xvgr.
Contains the icript that is called when one the coe6cient buttons arc
clicked.
A very small plogram that just waits until the user presses thc Return
koy; used io coef'scpt.

Blnck boxes may be added to THREADS with little efforl The spots where the code needs to be

modiced are narked by cosmcnts of the fo!m:

/* NBW METHODS: add atry new methods herc */

First, i! tho 6le dueads-ui.cc, iNert the line:
(void) r,,rhdchoice.addChoic€ ('Ir{cthod name");

where 'Ir,iethod name' is the nase to appear on the menu in the interfece' For each ncw method

addc4 a sioilaf line must be inserted. Thc lines need to bc added to the cursnt listing of choices,

which is oarked in the codc.

Next, ir the file threadsjtubs.cc, add anodrcr "else if' condition of the form:

€lse if Gtrcmp(nethod, "\4e6odFile") == 0) {
stlcatGomDand, "MethodName');

In this section 'MethodFile' is the exeautable file , .,c fot the black box. Each new method ne€ds

to have its own case in the "if-else if' statomsnt.

New nothods can also bo used by placing them in ths blackbox dtectory ad typing the namo of

dEesds.icon:
th€ads.mask
xvgr.prcfs:
coef,scpt:

a[et.cc:

the nothod executabls in thi "Ivlethod:" tsxt field. This is much easier ftom a FograrDmhg
aspect, but this requircs tho user to type in lhe name instead of being ablo to select it ftom the
menu.

New types ofdistributions may bo added in a siroilar fashion. The menu choices for "Sample Dis-
tribution" arc added tho samo way as thosc for "Method." A cles dednition of what rhe disaibu-
tion means and how it will afrect random gencratior of integors will facilitatc the changEs in the
codo of threads-ltubs.cc.

In thrcads_stubs.cc, the system calls use the full path names to execute the black box and to use
the o0le! include files. Check that thesc paths are corpct, and change tl:rm as appropliate.

CONCLUSION

As futur€ work on this Fojoct, further Adavision animatiolts could be geated or animation$
which is exist as part of the XIANGO package could bo Iefined for tho pu+ose of implementa-
tion into a data sfuctures course. In €gard to THREADS, further use of the "Sample Distsibu-
tion" feature is yet to be found, and additional features may be added-

The use of Adavision and THREADS in a labomtory setting is intended to involve students more
direcdy in their instruction than a classrcom setting alone. The animations arc intended to
improve students' unde$tanding of the data structures and algorithms being taught, and perfonn-
ing expedments on the algorithos allow fte students to analyze and expedence the effectiveness
and efficiency of different solutions to Foblems. It is hoped that ftis project does indeed enhanca
a data struch{es course, helping inshuctors convey to students the abstractconcepts of the course
ard actively involve them in the instruction.

BIBLIOGRAPHY

Donovan, Tommy. "Cetting Staned with TANCO." 1990.

Pross, William H., Brian P, Flannery Saul A. Teukolsky, William T. Vatorling. Nunerical Reci-
per. Cambddge l.l..iversity Prcss, Cambridge, 1986.

Stasko, John T. "BWE Prcgrnmmer's Manuat TANCO." Brcwn Univcrsity, 1990.

Stasko, John T. "TAN6O: A ftamework and system for algolithm anitL,*tion." ComputerYol.23,
No. 5, p. 27-38, 1990.

Tume!, Paul J. "ACE/gr User's Manual: Gmphics for cxploratory data analysis." Center fot
Coastal and Land-Margin Research, Oregon Gladuate lnsdnr: of Sci. and Tech., 1992.

Weiss, Malk A. Dard Strucnres and Algorithtn Analysis in Ad.a. Benjamin Cummings Publishing
Co. Inc., New York, 1993.

Algorithm Animations: AdaVision

AdaVision serves as a teaching tool for dau structues coursos taught in Ada by allowing students

to visualize data stsucture concepts, rather than ry to leatn atrd understand the concopts in an

abstract manner, Using tlrc algorithm animation package XIANGO, two-dimensional, color ani-

matiolls are qEated by combining two files. The first file contains tho implemootation of tho algo-

litllEr being admated along with procedure calls to the secold fi10, which consists of dle

animation scenes. The structu€s and data involvod in the algodthm implgmentatiotr are Epre-
sented in the aoimation scenes by images which move as a rcsult of intEresting events, such as the

insertion of a rcde into a linked list.

Some of the previous animations qoeted fot the AdaVision project display the conesponding Ada

code on the XIANGO window as the algorithm is beiog animated This display of code enables

students to view the connection between Ada code and the action of algodftms on data and data

structurcs. At tho beginning of an animation, tho fi$t line of Ada code is higl ighted by a rcctan-
gular image. Succeeding lines of code arc then highlighted as drey are executed within the algo-
rithm implementation, allowing students to obsorve the moveme of images uting place in

conjunction with the higtiighted code.

The two most curent AdaVision animations illustrato inseltions and deletions on a BTree. Due to

ttre complexity of the BTloo algorithm, these animations do not include the conesponding Ada

codo as pafi of their displays. Also due to comploxity, and because the implomentation is rct nec-

essary for what the animations ate intendod to illustrate, the actual BTtee algorithm is not implo-
mentod into the file which normally would contain the &lgodthm implomentation. Instead, each
animation morely demonstrates the possiblc sctions that would be perforued on a particular
BTfee if an insertion or deletion werc to occur.

Within each of tho BTree animations, as a value is insened or deleted, images which replesont
nodes, Iinks and values are repositioned accordingly. Nodes containing Yalues that 8ro not rele-
vant to the particular BThcg domonstration 8ro rEpresented by empty, smaller-sized, rectangular
imagcs, while nodes containing valuos which als necossary for ths demonsEation arc represented
by non-empty, larger-sized, rectangular images. The condition of the particular BTree that is
shown depends on the user's tesponso to a sedes of questions regarding tho BTree he o! she
would like to view. Those questions are askod in the folm of a dialogue before an animation is
shown. Oncs tho adlnatiort is displayed, a label describing the insertion or deletion being per-
formed is writlen nea! the bottom of the XTANGO window. Also, in the upper left corner of the
window is a display of text which indicates the value being insenod or deleled. The BTree delo-
tion aniration additionally includes a short text phlase which explains what is occurring within
the BTleo at tho moment that the images are moving.

BTtee Insertion

The BTree insertion arimatioo illustrates four possiblg way$ for a value to be inserted into a
BTree: into a non-full leaf, a leaf whose palent is non-fu11, whose ancestor is non-fuII, or into thg
leaf of a BTreo which does not fit a.ny of these cases, in which case the root is split. The anima-

tion conlaiDs a dialoguo which asks the user questions regarding the type of BTreo into which he
or she would like to see an imertion perfumed Dopending on tho us€r's rcsponso to tho ques-
tions, thc appropriate hsortion simulation is shown.

The case in which the value "100" is inserted ioio e leaf whosc parqlt is trotr-rul is illustrated
below.

Figur 1. The original fofm of the BTbo is displayed'

Figure 2. The value "100" moves down tbrough thc top of the a€e.

Figu:e 3. The value "100" moves down tlrough thc parcnt nodc.

Figu€ 4. The valuc "100" moves into its cctect plece h the leaf,

Ftguro 5. fbe micldlo value of the lcof, "90', movcs up ro
tho paront nodc and tho loaf le split.

Figur€ 6. The split nodes, aloog rvith their values ard linr.s, arc DDositioncd

BTree Deletion

The BTre€ delotion animation illustates six possible ways for I valuo to b€ deleted from a BTtee:
from a rton-leaf, a leaf that is larger than minimum size, a leaf whoso neighbor is larger than min-
imud size, whose parent is larger than minimum size, whose ancestor is larget tharr minimum
size, or a ddetion fiom a BTrcc which does not fit any of these cases, in which case the root is dis-
solved. Similar to the BTrc€ insortion, lhis animation contains a dialogue of questions. Deperd-
ing on the user's respons€ to the questions asked, the appropdate deletion simulation is shown.
The deletion of a value from thc trce is illu$tatod as the valuo movos down and into a ,,garbage
can" image.

Tho cass in which the value "100" is deleicd ftom a leafwhose parcnt is larger than the minimum
$izo i$ illustrated below.

DELEltOu FR04 LEnF, lEHr I'ttrlrtr',,
aoTH HElct€ots MtNllul, P4REM, iot H$udLtl

Figure 7. The ciginal form of the BTrce is displayod-

DELError{ noi !tnF, LEiF tlltti.al,
30tH rlal6l€0nE m*$ul, pnftm *Er $tfltiu,t

Figurc 8. Thc value "100" is movod into dre dolotion ..garbage can.',

N.Fa. dlh . h.tahbor.

Dril$r0fi a$r,, Llir, r*Jr rit|{lriun
roTH xErcr6as rirxr[r{ mtElrT Hor |ttnltit.t

Figruc 9, The value "50" is Eovcd dou,n so that the loaf may rogain its orlct

lrtltltoN lrtll lllAl, t|:tr r,tlrttnx.
afiH ilEtd$rBot8 HlliDt-it, pr|IEl{t ilot tl|ltl,iw

Figur€ 10. The leaf ond its neighbor mergo.

EOTH XErotBmg rltt$tti. pilE|{r Ngl tlHrxrtt

Figu! 11. Th€ two nodas, tbeir links, and valucs as repositioned as one.

Data Structures with Ada Packages,
Laboratories, and Animations

Herbert L. Derch€m
Wendy L. Barth
Cheri J. Bowsher
Darrick P. Brown

1.0 Introduction

The data structures course is one of the oldest and most stable courses in the comPuter sci-

ence curriculum. It has b€en present in all model curicula and cuniculum rccommenda-

tions ftom 1967 on, and its content has rernained remarkably stable'

Over thg history of the data structures course, many tools and approaches have been intlo-

duced and effectively employed. This paper describes a courso that was designed using a

combination of three such tools: the Ada programming language, algorithm visualization

and animation, and labontories with expcrimental algorithm analysis. The tools devel-

oped and used are described in detail.

2.0 The Ada Programming Language

The use of Ada in the data Etructues course was pioneered by Feldman [3] and more

recently advocated by Silver [6]. Several very good data structures toxtbooks are based on

the Ada language including Feldman [2]' Weiss [9], Hillam [4], and Stubbs and Webre [8]'

The advantages of Ada in a data structuEs course include the following:

. Packages aod private types allow the complete implementation of abstract data tyPes

including encapsulation and the separation of specification from implsmentation'

. Generics enablo students to work at a higher level of abstraction when constructing

absfiact data tYPs.

. Exception handting can be included within abstract data types to fufiher enhance

encapsulation.

In the coulse described here, students were prcvided with a libnry of Ada packages which

they used in tleir programming projects and laboratory exercises This enabled the stu-

dents to use the data structures in their own programs without needing to implement them

in detail. The code from the packages was available for students to examine and was used

in the class to aid in the understanding of data structure and algoridm implementation'

Packages that are provided in the library are:

Dala Studus wnh Ad! P&kasps, Llboototi*. md Aninu!@

AVI- Trees

Rational numbers

Unlimited precision integers

Binary sealch trees

Binary heaps

Itftist heaps

Linked lists

Queues

Stacks

. B-trees

. SPIaY trees

Some ofthese packages were adapted from those found in Weiss [9]'

3.0 Atgorithm Visualizations and Animations

Algorithm visualization and animation has been used successfully in data shuctules

coirses for some time. Examples are found in Brown [l] and Naps [5] Tools have been

described which facilitate thtdevelopment of these animations The tool chosen for use in

the present project is XTango [7].

In the present data structures course, visualizations and animations are used for both class-

room demonstration and use in the laboratory. The animations are intended to enhance stu-

dent understanding of algorithms, particularly since they the students do not write code to

implement the algorithms in most cases. Most animations illustrate the algorithm through

an animation thaiis viewed simultaneously with the Ada code which impl€ments the algo-

rithm. Ada statements in the code display are highlighted as their action is animated'

Many animations are provided with the distribution of XTango Some of these were found

to be appropriate for use in the data structures course, often with minor modifications ln

addition, oti-rer animations were developed as a part of the course development ptoject'

Those developed were:

. Linked lists with insertion, deletion, and search

. Infix to postf,x expression converslon

. Binary search tree insertion and deletion

. AVL tree rotaflon

. AVL tree insertion

. SPIaY tlee rotatron

. B-tlee iNertion

Dab Srrudues sith Ada Packages, Ilt)oaton6. ed Anidiio's

A more detailed description of these animations along with illustrations are found in

Appendix A.

4.0 The Laboratories

There are eight labontory exercises written for this course' Some of these require the stu-

J"ns to ur"-u p*tug"
"it"o

funnens qf"st Harness for the Repeat€d Execution of Ada

on Data Structures). THREADS is descdbed in Appendix B'

Descriptions of the laboratory exercises are found in Appendix C' The titles and brief

descriptions are given below.

I . Writing an Ada Program
fh" ,tia"ntt -" intitoduced to the Ada larguage by writing a program to compute the

nth power of 2 using integers and floats. They are also required to writc a.Program

whiih uses NewtoJs me*rod to calculate the squarc root of 2' Students observe the

limitations of size and accuracy with Ada's built-in numeric tyPes'

2. Using Ada Packages
StudJnts use a paJkage called Big-Inleger to obtain results for lar- ger powers of 2 They

also use a rational number packago to oblain more accurate rosults for the squarc root

of 2.

3. Using Generic Packages
StudJnts use a generic rational package and instantiate it for Big-Integer to ilcrease the

accuracy of the square root of 2 calculation

4. Big Oh Sampling
Fiie algorithms are provided in Ada programs with variousBig Oh values -students
run th; through THREADS to obsewe their timing behavior both in tabular and

graphical form.

5. Big Oh Determination
Sddents work with l0 algodthms whose big Oh behaviors th€y must analyze and

obsorve.

6. Stacks and Queues
Students run animations in XTango to observe and analyze the behavior of a stack

dnfix to Postfix conversion) and a queue (Post Offic€ Queue Simulation)'

7. ComDarison of AVL and Binary search TEes
Studints use packages for AVL tre€s and Binary Search trees to obsewe and compare

their behaviois in terms of search/insertion times and avenge depth of an element in

the tre€. THREADS is used !o perform the analysis on tie observatrons'

8. Sort Comparisons
THREADS is used to compare the behavior of five different sort algorithms over vari-

ous data distributions.

Data Strudc *ith Ad! P&k!g€s, hloratoics' ed Anim'lions

5.0 Project Activities

The project was conducted on the following time table:

1. June-July 1993
Course and laboratories designed, Ada Packages written, data structure visualizations

constructed to support laboratodes. Professor Dershem was assisted by Wendy Barth

and Cheri Bowsher with support from a National Science Foundation Research Experi-

ences for Uldergraduates progam g.ant. Also' student Bob Chen assisted

2. November 1993
Results of work of previous summer were presented by Wendy Barth and Che'i Bow-

sher at the Argonn; National Laboratories Symposium on Undergraduate Research'

3. March 1994
Seminar on algorithm animation was presented at the United States Air Force Academy

discussing animations developed dudng the previous summer

4. June-July 1994
Course materials finalized, Documentation prepared for software products Professor

Dershem was assisted by Cheri Bowsher and Daffick Brown with suPport ftom a

National Science Foundation Research ExPeriences for Undergraduates program grant'

5. Fall Semester 1994
Professor Dershem was provided l/3 releas€ time by Hope College for the prePantion

of the course materials in the teaching of the cou$e'

6. November 1993
Results of work ofprcvious summer were presented by Dadck Brown and Cheri Bow-

sher at the Argonne National Laboratories Symposium on Undergraduate Research'

7. Spring Semester 1995
Piofeisor Dershem used the final materials in CSCI 286, Data Structures, at Hope Col-

lego.

8. August 1995
Final report was prepared.

Dara Sbdu6 wi6 Ada P@kases, Laboolorid. and Aninalions

BIBLIOGRAPHY

[1] Brown, M.H., Algo rithm Anim,tian, Clrlrbidge, MA, MIT Press' 1987

[2] Feldman, M.8., D ata Abstracrton with Ada, Reston, VA, Reston Publishing Company'

19851

[3] Feldman, M.B., Teaching data structures with Ada: an eight year Pe$pective, S/GCSE

Bu etin,22.Q)t2l-29, June, 1990.

l4lldlillajm,B., Introduction to Abstroct Data Types IJshg Ada,Englewood Cliffs' NJ'

Prentice-Hall, 1994

[5] Naps, T.L. Algorithrn visualization ir computer science laboratode s, SIGCSE Bulletin'

22(l): 105-l 10, Fobruary, 1990.

[6] Silver, J.L., Uiing Ada to specify ard evaluate projects in a data structutes course'

SIGCSE Butletin,23(l):337-340' March' 1991'

Fl Stasko, John T. TANGO: A framework and system for algorithm anilrrztion, Computer'

23(5't: 2'l -38, 1990.

[8] Stubbs, D.F.and N .W.Webrc, Data Structures vith Abstract Data Types md Ada'Bos'

ton. PWS Kent, 1993.

[9] Weiss, Mark A. Da ta Structurcs and AlSorithn Analysis ln Ada, New York' Benjamin

Cunmings Publishing Co. Inc.' 1993.

Daia Stucturcs wiih Ada Pattg6, Labodtori.s &d Alination paec 5

Appendix B
AdaVision - Visualization & Animation

AdaVisioncombinesAdacodewithdynamicimagestoserveasateachinstoolfordatastructure
courses taught in Ada. Using the algorithm animation package XTANGO, animations are created

so ,tudens-muy niet the connection between Ada code and the action of algorithms on data and

data structures. With the exception of the AVL insertiol, the Ada code associated with each

algorithm apPears in the display area of XTANGO In some cases, procedures which are not

explicitly displayed are used in order to simplify the code'

The structures and data involved in an algorithm are represented by images' These images move

as the result of interesting events, such as the inse(ion ofa node into a ftee or the movement of a

ilntin a rotatlon. e.t the ieginning of each animation, the first line of Ada code is highlighted by

a rectangular image. Succeeding lines of code are highlighted as they arc executed The user

observei'the image movement taking place in conjunction with the code highlighting'

Linked List

The list animation demonsfiates how inserts, deletes, and finds arc done on a linked list with a

dummyheadernode.Insenmaybedoneatanypointwithinthelist,deletewillremovealloccur.
rences of a particular value ftom the list, and find will search for the frrst occurrence of a value in

the list.

XTANGo,sanimationwindowappears'andafterthe.runanimation,buttonisclicked,all inter-
action with tho user will occur in ihe shell window. A menu is displayed there, giving the user the

options of inserting a node, deleting a node, finding a node, or quitting the application'

If the user chooses to insert a node, sare will be prompted for the value to be inserted, and then

promptedforthedesi'edplacetoinsertthenode:githeratthestaltofthelist,thoendofthelist 'or
after another user-specified node lf the user desires to delete a node, s/he will be promptcd for the

value to be deleted, and informed that all [odes containing the valua will be deleted. If the user

chooses to find a value in the list, s/he will be prompted for the value to find, and infomed that

only the first occurrence of the value will be found. After all information for a particular operation

has been gathered from the user, the animation begins'

In an insert, an external pointer finds the node to be inserted after and a new node is drawn and

added to the list. In a deiete, an extemal pointer finds both the nod€ to be deleied and the node

immediaigly before it prior to deleting the node. In a find, a comparison is animated between each

element of the list and the find value. The frnd value appears in the lower Ieft coner of the display

area,andaseachelomentisvisited,thefindvaluemovesnexttothevalueofthenode.Iftheval-
ues march, the images flash. If they do not match, the find value returns to its place in the comer'

Nodes are represented by divided rectangles The teft half of the rettangle contains the value of

the node, while the righthalf holds a pointer to the next node Any extemal poirters' such as those

App.ndix B Ad tsion \tsldizaion & Anination

used to f,nd a certain node in the list' appear and move along the bottom of the list image' The

"oO"
-o"rponang to each operation appears at the top of the animation window' and after an

"*raii-o"
ft'-*"f"""a' it is erased' mJ original list consiss of a poinler named FIEAD that

oli"" a
"

a"*-v tt"ader, that is, atr empty node whose pointer 6eld points to NULL As lists

i""o." fong, ttt.y *ill move off the display arca to the right' The images can still be viewed by

usins the ar;ow buttons on the left side of the XTANGO window''
Prev-CeI I != F ind(inPut -vaLue ' L) ;

TernP

Figure l. Inscdng a node at the stalt of a linked list

Infix to Postfix ConYersion

Adavision's 'postfix' animales an infix to postfix conversion' After clicking-XTANco's 'Run

Animation' button, the user is asked to enter an infix expression' This original stream of characters

aDDears below the label ,INPI-IT, in the XTANGO window. The posdix expression is built and

oiaced under the labet 'OUTPUT' and the opolators are storcd in a 'STACK' image as they are

proccsed. Throughout the animation' an a'tow is used to point to the character of ths inPut stream
'nhich

is *rrently-und"r consideration. The corresponding lines of Ada code-are also displayed and

ttigttUlft
"a "t

,tt"
"onversion

is performed. Execution is completed when all symbols in the infix

expression have been Processed alld the stack is emPty'

Itisassumgdinthisaninationthattheuserhasapreviousunderstandingofstackoperations'such
as pop and push. Once a chamcter, or symbol' is read, it is pushed onto either STACK or OUTPUT'

ln op"r-a U tnt innx expression moves dire4tly from the input to the output saeam' If an

ooeritor is encountered, it is moved to tlrc output after all opentors with a lesser precedence are

popped from the stack and pushed onto the output. A compadson betweenrhe ol)erator being

considered in the input and the operalor at the top of the stack i6 indicated by a blinking top-of-

stack element.

Temp := ne r , l Node ' (X . P rev -Ce1 l .Nex t) i
HEAD

e

Prev-CeIL

NULL

eI I .Nex t := Tempi

Affidix B Adavsion - Visualizrion & Atirndion

ln comparing operators, left Parentheses have the highgst priority' while dght.pajentheses have

none. fns ,ieuns rigfrt pareotheses will never be pushgd onto the- stack lf a dght parcntheses is

;;;;;;;;;* will be popped from tle stack and put in dre output until a left one is

i"*f,"J. rft" r"ft p"r".,t .ses iittr.en removerl from the stack, and so ro parenthesis ever appear in

the outDut.

coNvEFSpX aFolli ll'lFrx To Fo5TFtr(

sh i l o 60€ . n4 -o f - i npuc - I ooP

1F opoF .hd (nex t - ssmbo l) t h ' n

puc (noxt-39mboI) :

o l s l , F nox€ - . smbo l = -) - t hen

uh r . I 6 t oP (6 !ack) /= - (? . l ooP

Pu t< |ooP(s t ' c k)) ;

| 6oP (3€ack) :

dh t l 6 noe EmPts (3 t . ek) ond t h ' n

P . l 6 r l cg <nsx t - cs .nbo I) <=Pr l o r rbs

1 € (t o p (c t a c k) , / - ' < ' > L h ' n

Pq t (PoP (c t l c k)) :

6nd I 6oP ,
puch <noxc -ss i bo I) i

((3 ' o) + 6 / r)
4

STACK

(lop (cc .ok)) I ooP

uh1t . noE EnPtg<3tock) Ioo |c
pue <Pop < t tack>) t

Figure 2. The infix

ot 'lPuT

stream is placed in IMUT.

col{vEFsF tt<ttrr l.tqlo FoE fx

II{FUT
ohr.l. noc ond-oa-lhpqt-lo6P

3. ! (n .x l -a !FboI) . t
L€ oF. r .hd (h .x t - .smbo]) !h 'h

Futs (n .x t - . !6bof) :
ELi? ..rE-=6EEr=__._r'--EF;A

dh r I . coP (s t . c k)?z= ' (' I ooF
pu t (P6F <o ! . ok)) t

poF < . c . ck) ,

dh lLo noe Empcs (. l . c k) dnd t h ' h

P r !oF1 tg (nox t -3sFbo l , > <=Pr i o r l t s (t oP (3 t ! c k)) I oop

r F (t o P (. E . c k) t / = ' < ' t E h o n

Pu€<PoP(cc . ck)) ,

pqsh (n.:€-alrbo.r) :

uhr lc n6€ EmPts(sc .ck) loop
pu€ (PoP (c t .ck)) ,

Figure 3, The symbols arc processed, moved onto

) . . / t)
f

(

STACK and

Appodir B Adavsion vsualizarion & Animdion

into oUTPUT.

+

Figure 4: The final postfix expression appears in OUTPUT'

Binary Scarch Tree

Adavision's "bintree" animation demonstrates inscrtions and dgletions on a binary search tree'

il" o* it aUf"V"a
"n

the right side of the display area, and the Ada code is shown on the left

sidc.

Upon besinninq the animation, ttle usor is asked whether or not s/ltc wants to see compalisons' If

,fr! uter int*"i Xnttativcly' all comparisons will be animatcd during the viewing of the anima-

,i"" ir," *" u"itt""a iinmediately bjfore a value moves down the tre€ as follows: if the inser-

iion uAo" it f"tt ttt- the existing node, it moves to the left of the node and a less-than sign

aop"urs u"t*e"n ttte ualues. If the new value is gleater than the existing node, it moves to the

,i?f,i. f,f," ur". ao"r not wish to see the comparisons, s/he should answer no. After making this

JiiSoq u -*u
"pp"ars

in the shell window. The user inputs which operation s/he would like to

see, along with the value to be inserted into or deleted from the troe'

The Ada code for both insettions and deletions is rcursive' Each level of recursion is shown by

outlining the tree currently under consideration. Old outlines 'dim' by changing color wherl a new

level of-rpcursion is entered. All code is erased and rewritten to show each recursive call'

Whon an insertion is animated' the new value apPears in the upp€rleft comer aIId then moves to

the root position, The new value slides down tothe appropriate child position: left if less' tight if

qreater tiran the node. This continues until the oew value finds an empty position or encounters a

i.J .f m" t^-"
"a*.

If the new value finds art empty position, a new link is drawn to comect it

to tt
"?".-f'lo

uuto" -ay appear more than once in the tree, so if the user does try to insert a value

tft"t Ai"uny
"*ittt

in O" tree, the node witl flash, and the rcw copy of the value will be moved out

of the fiee.

A deletion is animated in similar fashion, excopt that we are searching to match the deletion

value. once the value has been found, the correct Ieplacement flashes, the node being deleted is
'lifted' out of the tree, and the replac€ment node or suB-Tree is 'pulled' into place by the link that

App. 'x B Ad.Vsion - visurlizdion & Anitulion

Dreviously Dointed to the deleted node. If no node is found that matches the deletion value' the

Ltetion vaiue will be 'lifted' out of dre tree'

ft-Iffisl
T := nd Tree_Node- (x . nur r .

. t s l f X < T . E I d e n t t h . n
In .c r t () (- T .L .€ t) i

c l s 1 f X > T . E . L m . h t t h . n
fns . r t (X . T . Rtgh l) i

Figure 5. Inserting a node into a suB-Tree

AVL Thee Rotation

Adavision's 'avlrotat' demonstrates single and double rotations of an AVL tre€ upon the insertion

of an element, The user may view any of four rotations as many times as desired by choosing an

option number in a shell window after clicking XTANGO'S 'Run Anination' button'

In the single left rotation, lhere exist nodes A and B' where A is the original root of the trce and B'

e, t"tt
"i'ita,

i, ti," ,oot which results from the rotation, The tre€ is filled in by threr triangles

*tri"tt t"pi"r"nt tuS-Tre€s of depth 'n' . The double left rotation consists of thrco node images: A'

the orig;al root; B, A s left child; and C, which is B's right child and the new root ln this case'

the tre; is frlled by two triangular suB-Trees of depth n, and two triangula! suB-Tre-€s of depth
in+l'. The nodesln each rotation arE connccted to suB-Tre€s by way of'links,' which serve as

pointen to nodes in the tuee. Thc single right and doublo dght rotations are mirror images of the

left rotations.

The element is lepresented by a small, olauge tdangle which fust appears in the top dght-hand

comer of the XTiNGO window. After working its way down the tlee in standard binary search

tre€ fashion, the element att2rhes, or inserts, itself to the bottom of a suB-Tree, potentially caus-

ing the tre€ to become unbalaoced. The elemont is inserted into the left-most suB-Tree of the

oiiot for rhe sinsle left rotation, the right-most suB-Trce for the single right rctation, the right

IJ-t
""

of,n"i"r,
"r,itd

of the pivot for the double left rotation, and the left suB-Tree of the right

child of the pivot for tie double dght rotation'

Each rotation also has irs own display of Ada code. As each line of code is highlighted, the appro-

Driate link movement is perfomed. Orco all links are in position, the rotation occurs The irnage

li each node moves to its new position in the balanc€d tree and the links are redrawn accordingly,

A@dir B Adavision - Msualizltio & Aninatiot

Doub I - -R iahe Ro€ .e1on

AVL Ttee Insertion

AdaVision's "avlins" animation demonstrates insertions into an AVL tree This animation

assumes that the user aheady has a working knowledge of the four types of AVL rotations: single

left, single right, double left, and double right. No code is displayed in the animation window' but

the user is notified which rotation is being performed'

Aftor pressing the 'run animation' button on the XTANGO window, the user is prompted for the

value to be in-serted into the tree. values may be betwern 1 and 1000, with 0 serving as the quit

option. The user inputs the value s/he would like to see inserted, and the animation proceeds from

there.

First, the insertion into the tree is animated, The new value appears in the upper left comer of the

display window, while the root of thg tree is surrounded by a blue circle' This blue lozenge marks

the position in the tree currently being comPared with the new value, ard witl eventually mark the

spoiwhere the value is to be piaced. Next, the circled node flashes to show that it is being com-

oared to the insertion value. If the new value is loss thall or equal to the surroulded node, the loz-

!ng" mou"s to tlt" positioo of the left child of the node lf the new value is Sreater than the node'

the-lozenge movesio the right child's position. After the conect move of the lozenge' a new com-

parison is'done. If no node ;xists to compare the value with, the value is inserted into the tree as a

new node, and an edge is added to connect it to the treo'

t o o t : = c : l

Fieure 7. A balanced AVL tree following the perfomance of a double right rotation'

Figure 6 . The repositioning of link due to the insertion of an element into a suB-Tree'

Appendix B Adavkion - lisualialon & A.ination

If the new node causes the tree to be unbalanced, a rotation is animated. First, we search for the

orruaun""a .os-rr"". The blue lozenge is replaced by a gle€n one, and the green lozenge moves

,rf tle tree ,rntit it nnas a node whose tree is unbalanced lf one is found' the uset is notifled of

wiich of the four rotations will occur, and the rctatio[is done lf one is not found' the green loz-

enge disappears.

In a rotation, when a node moves, the edge pointing to it is deleted before the movement occu$'

After the node has assumed its new position, a llew edge is drawn that points to it The only

exception to this action is when the node is moving from or to the root position in the tre€'

After the value has been inserted and arly necessary rotation don9, the user is prompted for the

next valug to insert into the tree.

Single teft Fotafon

Figure 8. Finding the Pivot node

Figure 9. The balanced tree following a single left rotation

SPIaY Tfe€ Rotation

Adavision's 'splay' demonstates zig-zig and zig-zag splay tle€ rctationsJhe user may view

either of the two rotations as many times as s/he would like by clicking XTANGO'S 'Run Anima-

tion' button and choosing an option number ftom a shell window'

The zig-zag demonstation includes thre€ nodesi X, the left child of the pivot's right child and the

node ti belcessed; G, the original toot aod grandparent node of X; and R the parent node of X'

Th"." nod", ."
"onnected

by iinks' to four triangular suB-Trees labelled A'B'C' and D' where A

is the left-most suB-Tree and D the right-most suB-Tree'

Appadix B Adavsion Vsu,liaiiot & Aninaron

In viewing the zig-zag animation, the links are repositioned one at a time and the cor'esponding

lines of Aia codJ are highlighted until the objective of making X the new root of the tree is

accomplished. Following thi series of link movements, the images in the tree are rcconstructed'

bringing the tree into its rotated form.

The zig-zig rotation is demonstrated similarly, except that X is initially positioned as the left child

of the Divot's left child.
. ZTC 'ZTG- SPLFY ROTAT ION

Fisure lO. The movement of links in order to access node X'

. z t c - z l G ' SPLAY ROTATION

*.---^------.:a

A ---^--=-
/ A \ I G

A A\ ,,\a A ' A 't] A

Figure ll. The rotated splay tree with X as its new root

B-Tlee Algorithms

The following two Adavision animations illushate insertions and deletions on a B-Tree Due to

tt e
"o-ptexltl

oi tt
"

B-Tree algorithm, these animations do IIot include the coresponding Ada

code as part o? fteir aisplays. Also due to complexity' arld because the implementation is not nec-

"*"ay
fi. *ft",,ft" -inLations are intended to illustrate, the actual B-Trce algorithm is not imple-

mented into one of the two separate XTANGO files as it nomally would be lnstead' each

animation merely demonstra6s the possible actions that would be performed on a particular B-

Tree if an insertion or deletion were to occul'

within each of the B-Tree animations, as a value is inselted or deleted, images which represent

Appendir B Addision - visutliu tion & Aninajlon page ll

nodes, links and values are repositioned accordingly Nodes containing valueslhat are not rele-

vant io ttr" pu.ticuf* n-Tree demonstration are rePresented by empty, smaller-sized' rectangular

images, while nodes containing values which are necessary for the demonstration are 'epresented

by rion-empty, larger-sized, rectangular images. The condition of the particular B'Tree that is

shown depends on the user's response to a seties of questions regarding the B-Tree he or she

would like to view. These questions are asked in the form of a dialogue before an animation is

shown. Once the animation is displayed, a label describing the insertion or deletion being per-

formed is written near the bottom of the XTANGO window. Also, in the uppel left comer of the

inao ls u aispluy of text which indicates the value being inserted or deleted The B-Tree dele-

tion animation additionally includes a short text phrase which explains what is occurring withio

the B-Tree at lhe moment that the images are moving

B'Tree Insertion

The B-Tree insertion animation illustrates four possible ways for a value to be inserted into a B-

Tree: into a non-full leaf, a leaf whose parent is non-full, whose ancestot is non-full' or into the

leaf of a B-Trce which does not Rt any of these cases, in which case the root is split' The anima-

tion
"ontuint

u aiufogue which asks the user questions regarding the type of B-Tree into which he

or she would like to;ee an insertion Performed Depending on the user's rcsponse to the ques-

tions, the approPriate insertion simulation is shown'

The case in which the value "l00" is insened into a leaf whose parent is non-full is illustrated

below.

Figure 12. The original form of the B-Tree is displayed'

Appe.dix B Adavision visualianion & Aninalion

Figue 13. The value "100" movcs down through the top of the fee'

Figure 14. The value " 100" moves down tkough the parent nodc'

Appddii a Adtvisid - Vrsurlidion & Adtdion pogp 15

Figure 15. The valuc "100" is inscrted into its conect place in th€ lcaf'

Figure 16. The midrtle valuc of the leaf, '9O", moves up to the puent node and the leaf is split'

Appadii B A&vfi@ - vlsualiadon & Adnttli@

Figure 17. The split nodes, along with their values and links, are rePositioned'

B-Tfee Deletion

The B-Tree deletion animation illustrates six possible ways for a value to be deleted from a B-

Tree: from a non-lcaf, a leaf that is laryer than minimum sirc, a leaf whose neighbor is larger than

minimum siz€, whose parcnt is large! than minimum size' whose ancestor is lalger than minimum

sizr, or a deletion from a B-Trco which do€s not fit any of these cases, in which c'se the root is

dissolved.similaltotheB-TEeinsertion,thisanimationcontainsadialogueofquestions.
Depending on the user's response to the questions asked' the appropriate deletion simulatiol is

shown. Tie deletion of a value ftom the tre€ is illustrated as the valuo moves down and into a

"garbage can" image. The movement of rgmaining values, nodes alld links then proceeds as their

images are repositioned accordilgly

The case in which the value "100" is deleted ftom a leaf whose parent is larger than the minimum

siz€ is illustrated below.

App€ndn B Ad.Vision - Visualizdon & Aninalion

Figure 18. Thc original fonn of the B-Tree is

Figure 19. The valuc "10o" is deleted by being thlown into thc '!a$age can'

DEl-aflOh tror LEAI. LErr fiInrhw'
lorH '€rcrcoRs r{tfl$n1. riiErlr Ntri tirnrfi$l

Aooadi,i B Adav*ion- ualizli@ & AIiET id paF 18

oELEtloll Fto{ |EnF, ltAF Ilrrlll{ll,
roTH }]Erd€on5 ||rm|{fi, PAREHT or ftiltt'ttl

Figure 20. The vatue "50" is moved down so that th€ leaf may r€gain its order'

DELElrorl lid{ LEif, LEiF rllfitn$L
BOTH NEIC'EORS tltlrltllr'i. PnFEm ||n talrllli.ll

Figure 21. The leaf and its n€ighbor melge

Appcndix B adav6id - ualit"ai@ & Ariddd

DETE Ofl rRd{ LEIF. LEiF ntuil}1.

!fi$ nElqEfls irllftu, mRE{T fiCr H rd

Figurc 22. The merging nodes, their links, and valucs are repositioned as one'

Appendix B Adrviri@ - liludi4dd & Anir|aliotr pos.20

Appendix B
THREADS

Many experiments that are performed in the laboratories involve running tests on algorithms that

have been implemented using Ada packages These tests produced results that can be measured

and analyzed. working in the Iab gives students the chance to be mo.e directly involved in their

leaming, increasilg the amount of information they retarn'

Some of the Ada packages will be written by the students themselves, but mo'e are provided by

the instructor. In titis w;y, th€ students are exposed to more data structures and algorithms Stu-

dents will spend their time seeing and experiencing the effects of algorithms instead of actually

coding the algorithms and conesponding data structures. This should increase their ability to ana-

lyze the effeciiveness and,/or efficiency of different approaches to a problem'

Cunently, experiments are planned for the following applications:
1) Big Oh Experiments
2) Comparison of different sorting algorithms
3) Binary search tlee vs AVL tree
4) Hash collision handling
5) Big Oh coefficient evaluation

In order to;n these types ofexperiments in a laboratory setting, an appropriate tool is needed

The major part of our project consists of the development of such a tool, named THREADS '

THREADS (Test Hamess for Repetitive ExPeriments on Ada Data Structures) is a tool that can be

used to run tLsts on data structurcs and algorithms, reporting back to the user some type of the

measurement of the test. The tests are 'black box' programs that are implemgnted separately' and

may be tested and run separately as well.

How th€ Student Uses THIIEADS

The basic idea behind THREADS is illustrated by the following chart

Black BoxData Set

THREADS

THREADS generates a data set based on information given by the user' This data set is used by a

bl-k bo* m--n on" uxperiment. Upon the black box's completion, it returns to THREADS the

sample size of the data ;et and an integer mgaswement of the test' The measurement will be

included in a table that keeps track of each experiment the user runs'

RunningTHREADSbringsuptheinterfaceshowninFigure23.Allinfo'mationneededforthe
data se;s input in the appropriate places by the user' The parameters the usel may designate are

as followsi
Method: The black box to use for the experiment
Write to File; The named file where the data sst is stored' If no file is designated' a

temporary default file will be used.
Write Patir: The path to the directory wherc all data and files will be written'

Use File: The path and name of a data set to be used in place of a file generated by

THREADS.
Sample Size: The number of elements in the data set'
Sam;le Distribution: lfte statistical probability distribution used to generated the random

data set.
Sample Order: The extent of ordering imPosed on eloments in the data sel'

The defauit senings are for a 100 olement, completely unsorted data set generated randomly from

a uniform random distribution.

Method
ih" bl""k bo* pro""rs is spawned by the THREADS process When THREADS executes a black

box, it gives th; black boi a data set generatod by THREADS IT then waits for the black box to

."toin.
'Wft"n

tft" Ufu"k box retums, THREADS takes the data and writes it to the Table of Mea-

r"*t"",". ift" Uf* box rotums 2 intogers. The first is the size of the data set and the second is

the measurement that the black box retums.

The meaning of the measurement retumed by the black box witl vary depending on which black

box is being run. In some cases the measurement may be the number of comparisons that were

performed i-n a sort routine. In the case of the binary search tre€ exPerimgnts' the measurement

Loi"t"r" itt"
"u"."g"

depth of a node in the tree. In all cases, however' the measurement will be

u ion-n"g"du" inr"g-"r useful in analyzing the effectiveness or efficiency of a.cenain data struc-

ture or al-gorithm foi a particular daia set The measurements retumed from different expenments

can then be compared against each other to aid the user's analysis'

write to File
th".o. fi"la l"b"t"d..write to File:', takes a name as input. If a name is specified, the generated

data set will be saved to a file with that name ill the dire'tory specified in the "write Patlni' text

field. If no name is specified, the data set will be saved to a temporary file'

Write Path
th" "Wri

"
pu,h," ,"*t field takes a patlt string as input' THREADS will not operate until a valid

Dath is siven. The path string needs to be a pith where the user has read and write permissions'

inni,iDi ,""at i"a writeimany data filei. If it cannot read and write its data' it will not work

f.operty. f *re ,rser uttempts to run a black box without suppling the write path' a notice prompt

Appendix B THREADS

will appear and notify the user to supply THREADS with the approp ate information.

l l6asur9|l len

Figure 23

Use File
The "Use File:" text fr€ld takes a string as input, This text string must contain lhe enttue

path and name of the data fite to be used. If a valid path and name is given, THREADS

will use this data set for the black box iNtead of generating a new data set THRFADS will use a

sDecified data set before generating a new data set' Therefore, if thc user wishes to generate a new

dala set, the string in the "Use File" text field must be deleted'

Sample Size
The sample size field allows the user to enter the number of elements to be ircluded irl the data

J, ranging from 1 to 10000. The sample size may be changed by ushg th€ mouse to click on the

upidow-n ainows, or by manually entering the size into the text field. The default is 100 elements.

Sample distribution indicates the type of randomness in which the data elements are to be distrib-

uted. There are six different distributions to choose from'

1) Uniform.
2) Exponential.
3) Normal
4) Gamma
5) Poisson
6) Binomial

TotherightofthesampleDistribution,thereisabuttonlabeled.DistributionParameters'.Ifthis
bufton i;fcked a window parel with number fields will appear (Figure 24)'

(Figurc 24)
with this distribution window panel, the user can modify the distdbutions by changing the param-

eters for each distribution

These distributions can be used to evaluate how the dist bution of data can affect different data

structures. For most cases, Uniform distribution is suffrcient- Future work on distributioN

includes the development of black boxes that fully utilize the Sample Distribution feature of

THREADS.

Sample Order

The sample order refers to the degre€ of order the user would like in the data set to be generated'

---"i"" i.* -r oo . 100. A sample order of l0o meaIIS that 10070 of the data will be in indeas-

#'#;;;;; ;pl" ord", of -t 00 t""ns that 100% of fte data is in decreasing sorted order'

^"#;; il; ;i;;;'means that the data is in perfectly nndom order' Anv vatue between -100

;;i 06;r;;r;;bb. e vatu" of so m"ans that the first 5070 of the data is ir inqeasing soded

order, the remainder is in random order'

Data Set
ih".ro:t"

""t
i" g"n"rat"d based on the information from the sample size' distribution' and order

nJia* ii"
"f",i*o

ar" randomly generated to fulfill the user's requirements A data set can also

_^"'r...1i.p"*o data set using the -use File;" text field by supplying a path and name.

Table of Measurements
Si"* ail *" In"V Ue saved in filos designated by the user' experimelts may be rspeated The

;;-";;;;;;"" from an experimen-t session may also be saved' so the user mav come back

a-,i" i""
"i "

r"", ,ime to continue analysis or even add to the previous experiment re.ord.

iuites ure ,au"A Uy
"licking

the right mouse button while on the table From the 'File' monu'

"i*r"
,t

"
oo,lon :Suve as.L' and a save window will appear To load in a previously saved table'

choose the option 'OPen' from the 'File' menu'

Run Exneriment
ffilnG nun n*p"timent' button is clicked, the data set is generated and.written to the appro-

rl"i" nf'". n"-i, ,fti ulack box process is spawned and executed when the black box finishes' the

i"."r" ti"" -J t"*turement ;re written 'o the table of measurements lf the user has not Pro-

il tiliGADi- ;i h the appropriatc information, the user will be notified to -do so and no

"*o"ri*"nt
*itt U" .n. ff th; bhck box aborts or crashes, the usel will be notifred that there was

aninor in the black box and no data wilt be wriften to the table'

View Graph
ffili-th" ii.* Gr"ph, button is clickod, tho measuemenrs cunently in the table will be used as

the coorrtinates for a graph. Graphs arc generated using 'xvgr' and may be created at any point in

the experiment sessio'-n. iach graph is pioduced in its own window with a unique title' which

allowifor easy comparison between graphs'

Clear Table
The 'Clear Table' button allows the user to clear the table at any Poiot during a TI{READS ses-

sion. This enables the user to stan a new set ofexperiments at any time When the 'Clear Table'

Uutton is cticked a prompt will appear asking if they really want to cle.ar the table lf "Clear Table"

i. ,"i."t"a. *r" tuft *iit t
"t"ut"a.

If
"uncil

is selected, the user will be retumed to THREADS

with no changes.

Coefficients
ff th" Coeffrci"nts' botton is clicked, a small window with five buttons will appear (Figure 25)'

The five buttons are log(n), n, nlog(n), n2, and n to some power" n'teing the sample size' If one

of these buftons is clicied, an xterm will appear displaying the coefficients of that particular Big

We25

Oh of the data in the table. For example' if lhe data in the table is:

100 600
If the n2 button is clicked, the xterm will apPar displaying:

100 600 6.0000000008-02

This means that with n=100 and y={00, an etFession of the form y=cnz would require c to be

eooooooog-oz. rr tns cocfncient remains relatively constant over many values of n, the function

represented is a good candidate for the big-oh firnction of the black box Process

HeIo
Help-may be found both by clicking the 'HelP' buttolon tle IH-READ-S.

window, or by pressing

the'help iev on the keyboard. The button on the THRBADS window will open a pop-up window

that contains complete helP text. Pushing the 'help' key on the keyboad s'ill give a short sum-

mary of help for the spot on the window wher€ the culsor is pointing'

aui!
FG 'quit' buuon is clicked, a notice prompt will appearamd ask if dre user really wants to quit'

ii can"e'i is setect"{ th" user will be retumed to the main THRBADS program without ary

Jtt-g"" ii ;q.it' it t"f*t a THREADS will exit and close all windows Also when TIIREADS

it q.ir, Ai"rip"..V nles will be deleted so no unwanted flles resrain in the sp€cified write path

directory.

THREADS Tirtorial
th"r" i, *."11 tototial prograrn that is included with THREADS' When this progran is run a

Figure 25

Appddir B fiRB,ADs

window opens that displays the complete tutorial text in a scrollable area This window is sized so

that it canie placed n;xt to the THREADS window on the same screen for easy reference when

working with THREADS.

For the Irstructor

THREADS is composed of 1l fites and a Makefile. The nles and their contents are as follows:

threads.G: Created by the graPhical interface code generator, Devcuide 3'0 1'

threads-ui.h: Definitions of labels used to receive information about the UIT objects'

threads-ui.cc Sets up the interface, and begins waiting for events to process.

threads-stubs.cc: Callback functions for the vadous widgets on the inlerface Also

thrcads. info:
contains any auxiliary functions needed by THREADS.
Contains the help text retrieved by pressing the "Help" key on the
keyboard.
Contains the complete helP text displayed in the THREADS help
window.
Contains the graphical data for the THREADS icon.
Contains the graphical data for the THREADS icon mask.
Contains the preferences for xvgr.
Contains the script that is called when one the coefficient buttons are

clicked.
A very small program that just waits until the user presses the Retum
key; used in coef.scpt.

Black boxes may be added to THRBADS with little effort. The spots wherc the code needs to be

modified are marked by comments of the form:
/* NEW METHODS: add any new methods here */

First. in tho file threads-ui.cc, insert the line:
(void) mthdchoice.addchoice ("Method name")i

where 'Method name' is the name to appear on the menu in the interface. For each new mgthod

added, a similar line must be inserted. Thg lines nesd to be added to the current listitrg of choices,

which is marked in the code.

Next, in the frle threads-stubs.cc, add aoother "else if' condition of the form:

else if (strcmp(method, "MethodFile") : 0) {
strcat(command, "MethodName") ;

I
In this section ,MethodFile' is the executable file name for the black box. Each new method needs

to have its own case in the "if-else if' statement.

New methods can also be used by placing them in the blackbox directory and typing the name of

the method executable in the .,Method:" text field. This is much easier from a programming aspect,

but this requires the user to type in the name instead of boing able to select it from the menu'

New types of distributions may be added in a sirnilar fashion- The menu choices for "sample Distri-

longhelp.info:

threads.icon:
threads.mask
xvgr.prefs:
coef.scpt:

Tet.cc:

bution ' arc added the same way as those for "Method"' A clear defitrition of whai the distribution

means and how it will affect random generation of integers will facilitate the changes in the

code of threads-stubs.cc.

In threads-stubs.cc, the system calls use ths full Path names to exccute the black box aod to use

ttre other include nles. check that these palhs arc con€ct, and change them as apPropnate.

Appddit B THRBADS
pagc28

M'fueMm[&tu{Effial

40F4d!"-c D6's&ud(!5lth lt,rrllal !lg?29

Data Structures

Laboratory 1 - Writing an Ada program

1. Write an Ada program to accept as input an integer n and to calculate and pdnt the nth

power of two (2n). Store your program in the nle r,AB1-1 . ADA.

Run your progtam for some values of n and verify that it is coffert. List the values and

results below:

Find tho largest integor value of n for which this program gives a corroct value' what is

this value of n?

What happens when you enter a value larger than the above value?

How many bits do you need to represent the largest value of 2n that Ada can represent?

Hint it takes k bits to represent 2k - 1, and k+l bits to represent 2k'

Do you think Ada can &present integers that are larger than the largest possible Power of

2? Ii you are not sure, w;ite a little test program to sec. If so, what do you think would be

the largest representable integer?

Since your computer also has to represent negative integers, and assuming it represents

approiimately as many negatives as positives, how ma(ty bits does your machile use to

represent integer?

2. Modify the program you wrote for #l to express the answer as float instead of integer

Appcndix c D€fa slru.toe L.b M nal

type. store your modified prograur ir the file r-lB1-2 ' ADA'

Run your program for some valuas ofn ald verify that it is corect' List the values and

results below:

Find thc largost integer value of n for which this program gives a corect value- what is

this value of n?

What happ€ns when you entcr a value larger than the above value?

How does your answer here relate to your answer to #2?

The computer r€present a floating point number in two parts, the mantissa and the expo-

nent. From yolrr rcsults above, how mrny digits do you think yollr comPuter uses !o repre-

sent the exponent? R€member that negative exponents atE possibl€ as well'

3. Iffrite a program to use Newton's method to calculate ̂12 ' Newton's method starts with

an initial guess, x0, and then g€nerates successive gucsses using .rn * t = (tr -;)

Con8id€r that the Process has converged whenevcr two consecutive guesses are the sa$e

or when x2 = 2. For each guess calculate i$ error as x2 - 2.

How accuale is the answer which you obtain? To how many places is it accuratc?

Appodir C Dna Stu.tu6 blt Mdurr psge 3l

Data Structures

Laboratory 2 - Using Ada Packages

In this laboratory, you will solve the same two problems you solved in Laboramry l' but you will

make use of Ada packages to enhance your solutions The two Ada Packages that you will use are

described below:

Package big-inceger is a Package which permits you to do arithmetic on iltegers with infi-

nite prlcision. You are thercfole not limited to the size of integers implementgd on the machine

that you are using. A full set of adthmetic operators are implemented in this package for data type

big-inL. The specification of the Package is

big-integer . ads

Note: It is reconmended chac this package be used with an Ada

implementation that uses automatic garbage collection'

package big-inteqer is
b!'pe big-i.nt is Private;

function
function
furrction
function
function
function
function
procedure

function

procedure pub(a : b ig - in t) ;
p rocedure ge t (a : ou t b iq - inc) ;

func t ion nb i (s : sEr ing) leEurn b ig - in t ;
function nbi(i : inEeger := 0) return big-int;

-- noi stands for "Make Big Inceger"
procedure dbi{a : in out big-int);
func t ion b i2 in t (a : b ig - in t) re tu rn in teqer ;

"+ ' (a , b : b ig - in t) re tu rn b ig - in l ;

"+"(a : big-int) return big-int;
' - " (a , b : b ig - inE) re tu rn b ig - inL ;
"-"(a : biq-int) teturn big-int;
" * ,1a , b : b ig - inE) re tu rn b ig - in t ;

" / " \a , b : b ig - in t) re tu rn b ig - in t ;

"rem"(a, b : bj-g_int) return blg-int;
d i v (a , b : b i q - i a t ; r e s u l t ,

remainder : in out big-int);
"abs" {a : b ig - in t) re tu rn b jg - inE;

function "<" (a, b : big-int) retuln boolean;

function "q=" 1a, b : big-int) return boolean;

function "; '"(a, b : big-int) retuln boolean;

App€Ddix C Dala Strctus bb Mmual page32

function (>=" (a, b : big-int) ret\rrn boolean;

function equal(a, b : big-int) return boolean;
-- This is not the same as Ltre operator "="'
-- When making arithnetic comparisons for equality, use

the above funcLion.

function equal{a : big-int; b : integer) return boolean;

function asfloat(a : big-int) return floatt

function "mod"(a, b : big-int) return bigr-int;
big-int-error : exceplion;

pravate
tl4)e digit-node,
tl.pe drlJtr is access digit-node;
tlrpe digit-node is

record
d : in teger range 0 . .9 ;
next : dnitr;

end record;

tlpe big-int is
record

is3os r boolean;
dl ' dnitr;

end record,
end big-integer;

Below is an example program which uses the type bigint. This program should serve as a pattem

for the progmms you need to wdto in this and tho following laborato es:

-- Program co compute che square of an integet and Etore an'l print as a bj'gint '

with text-io; use text-io;
packase in!-io is new inteser-io (inleerer) ,

wi lh in t - io ; use in l - io ;

wiLh Eexl - io ; use tex! - io ;

\,rith big-integer; use big-integer,

procedure lab2-examp]e is

square : b iqr- in t := mbi{1) ;

nutnber : it':Leger;

begin

set(nunber) ;
;ql]"t" ,= nlci {number) *niri (nutnber) ; -- nbi converts intese!' to biqint'

- - th is cal ls puE f rom package b iq- in leger '

end 1ab2-exa$P1e;

app.ndrr C Dal!S@duEs Ltb Mtuutl

l. Rewdte ttle program you used in Laboratory 1 to calculate powers-of 2, using tyPe big-int

instead of integer ior the calculations. Calculate 2 to the powers l 16,1023 ' 1024' and 2M8'

Verify that the first 16 powers of 2 are correct from the answers obtained in l'aboratory l'

What are some ways that you can spot check the answers to 21023 and 2102?

How many digits arc there in 2104? How many in 22s8? How many would you expect in 24096?

Another package that is provided is one that does calculations for rational numbers. A lational

number ii a number that is represented by two integers, a numerator and a denominator' For

example, the float number 0.5 would be represented by the two integers (I ,2) since it is equal to

The specification of the package rat-pack defining tyPe rational is

Package Rat-Pack is

tl'pe Rati.onal is Private;

function "+" (R1,R2:Rational) return Ratj.onaf ;

f unc t i on " - " (R1 .R2 :Ra t io l t a l) re tu rn Ra t ionaL ;

function " * ' (R1, R2 : Rational) return Rational;

f unc t i on " / " (R1 ,R2 :Ra t iona l) re tu rn Ra t iona l ;

f unc t i on Ra t (11 ,12 : i n tege r) re tu rn Ra t iona l ;
-- converts Ewo integers to a rational

function Numer (R: Rational) return l trEeger;
-- returns the o\rmerator of a rational nuj'ber

function Denoft (R: Rational) recurn inceger;
-- returns the denominator of a rational_ nuniber

function "<" (R1, R2 ; Rational) return boolean;

function ">" (R1,R2:Rational) return boolean;

procedule Put (R:Rational),
-- oueputs a rational nunber

function Value (R: Rational) r:eturn f loat;
- reLurns a ftoat approximation to a rational number

zero Denominator : excepElon;

I

1 '

App.ndrx C Dda StNcluRs ljb M&ual

-- raised when a rational operator lesulbs in a zero

denoninator

private
tt4 e Rauional is record

Nuln : intege!;
Den : integer;

enil record;

end Rat-Pack;

2, Using the Package latJack, rep€at thc calculation of the square root of two using Newlon's

mpthod.

What is the bcst aPproximahon, mcasulpd by thc number of digits ir thE d$ominator' that can be

getreratcd using tYPe rational?

IIow does this compatE to thc b€st approximation possible using float?

What is exception is laiserl when your program is terminatcd?

Why was this exception raised by youl Pro$am 8t this time?

Appddn c Dara sttucfG tib Mdoal
pagp 35

minate your calculation after the seventh estimate.

What is the accuracy that you obtained on the seventh estimate?

Next we introduce the following generic package:

-- ratgen. ads

-- This is a qeneric package to define rational nunlcers over tlte

tl4)e i-nttl4)e .
-- Multiple operabors on inttl4)e are passed as par'lmeters '

generic
tt4)e inttype as Prlvalet
with function "+"(i1,i2 : intt lPe) return ioetlpe;

with function '-"(i1,i2 : i.nttl 'pe) return intt)/pei

with function \- '(i1 : intt lpe) return inttl1)e;

with function "*" (i l-, i2 : intt l 'pe) return inttl4)e;

with function "/ ' (i7'f2 : intt lpe) retuln 1ntts)'pe;

with funcgion "ren"(i1,i2 : inttype) return inttype;

with function equal(i l-, i2 : intt l@e) return booLean;

with function intequal{i l : intt lT)e, i2 : integer) return

boolean;
w i th func t ion "<" (i1 , i2 : in t t lpe) re tu rn boo lean;

with procedure put(i l : intt lFe; width : integer := 1000;

base :
i n t e g e r : = 1 0) ;

with function asfloat(i1 : intt lpe) return float'

package rat-gen rs
tl4te racional is Priwate;

func t ion "+ ' l r ! , 12 : ra t iona l) re tu rn ra t iona l i
-- sum of two rationals

func t ion '+ ' (11 : ra t iona l) re tu rn ra t iona l ;
-- identity operator

functiolt "+"(r1 : rational; i1 : intt l4re) return rational;
-- adds a rational to an inttyPe

funccion "+" (i l- : intt lGte; 11 : rational) leturn rational;
-- adds an int l t)4)e fo a lat ional

func t j on " - " l r I , 12 : ra t i ona l) re tu ln raL iona l ;
-- dif ference of two rationals

function "-" (r1 : rat ional) return rational;
-- negation operator

function "-" (r1 : rat ional; i1 : intt l 'pe) return ratj-onal;
-- subtracts inttl4)e from rational

function '-"(i1 : intt lFe; 11 : rat ional) return rational;

ADpodir C Dlta Slructm tj! Mdu,r

-- subtracts rational from inttl 'pe

function '*"(r1. 12 : rational) reeurn rational;
-- Product of two rationals

function s*' (rl- : r:ational; i1 : intt)Pe) leturn rational;
-- multiplies rational bY inttl |tr)e

function "*'{ i1 : inttft)e; 11 : rational) retur:n rational;
-- nultiplies inttlrpe by rational

func t ion - / ' \ l . l , 12 : ra t iona l) re tu rn ra l l iona l ;
-- quotient of two rationals

function "/"(r1 : rational; i1 : intt lpe) return ratlonal;
-- divides rational bY anttl4)e

function {/"(i1 : intt l.pe; 11 | rational) return rational;
-- divides intt] 'Pe bY ratj-onal

function rat(i1, i2 : intt lpe) return rational;
-- creates rational j ' I / i2 ouL of two inttypes

function nr.rmer (r : rabional) return lnttltpe;
-_ returns the numerator of the rational r

function denom(r : rational) leturn intLype;
-- leturns the denominator of the rational r

func t ion "a"111, r2 : ra t iona l) reeurn boo lean;
-_ less than comparison for two rationals

function ">" lr!, t2 : rational) return booleant
_- greater than conparison for two rationals

procedure Put(r : rational) ;
-- output function for rational

function value(r : rational) return float;
-- eonvergs raEional to real

zero-denominator : exceptaon;

private
t]4)e rational is

record
num : 1n!E)4)e;
den : inttlT)e;

end recordt
end rat_gen;

2. Using rat-gen with inttype denned as integet rerun your program for the square root of 2 esti.

mation.

Why did this fail to obtain the accuracy that you obtained in #l ?

What caused the Process to fail.

3. Finally, apply the type big-integer to the generic type rat-gen to obtain 'ationals over the

Appddir C Dat, Shcrurcs Llb Mdual

big-integer type. Run your square rcot of two progam using this dsta type and observe the

I€sults. Once again, terminare your prc$am after the seYetrth estimate.

How does the sevsnlh ostimal€ comparc with tlre s€vonlh estimate you obtained io #l?

What advantage do you see to using this gqedc approach ovcr th€ approach of using a sinple
typ€ in #l ?

Appodn C Dat! Sti!.n6s Irb M4@t

Data Structures

Laboratory 4 - Big Oh SamPling

Threads is a tool for running experimeltal programs and examining measuremgnts repolted ftom

those programs. This laboratory is your first experience using Thrcads software'

Read the Threads help file and familiarize yourself with the capabilities of this software'

Five pm$ams are provided for you to observe tho behavior of various big-oh ralos using Throads'

1. LaM-l is a program which computes 2n using an algorithm which is O(log n)' Run this pro-

gram ttriough mreiaas for n=64,128'256'512 and graph the resulting data For each value of n' run

ihe exoeriment three times !o generaie three data points at each value of n'

Compare the graph of your data with the glaph of the logarithm functiorl The bcst way to do this

is to ptot ttris lraitr using the Log-linear axes. Compare the resulting€mPh to a straight linc' The

nearer this apiroximatesa straight line, thc nearcr your times ar€ to O(log n)' Re'ord below the

data table generated and your observations conceming the graph'

Appadii C Daia sh@lls lib Mmu.l

2.Lab42is ^prcgr.'1lwhich sums the first n integers. It should run with a time of O(n)' Run it

,rt
"eltTh*"i

;ith tluee repetitions for n=50'100,150,200,250, and pdnt your table and graph'

Record your data table in the space bclow:

Your graph should approximate a straight line if the time of this algorithm is actually O(!) Does

it appoar to apFoximate a straight line?

3. Lab4-3 is a Fogram which calculates 2i for i=l,..,n. It should have a runnin€titnc of O(n log

n). Runlhis p;g; tbrcugh'Ihreads with three repetitions for n= 50, 100'150,200'250'300' and

rccord your table of restilts below:

GraDh the table of values generated' Change your graph of the above data to plot on Log-log axes'

If this ls truty O(n log n) time, this graph should appear as a sraight line' Is this the case?

Appddix C Data SEstuc bb Moutl

4. Lab4-4 is a progalrl which calculates a multiplication tabte for all paifs of integers in I "n' It

should run with a time of o(n2). Run it through Threads with tbree repetitions for n=50,

100,150,200 and copy your table values below;

Change your graph of the above d4ta to plot on Lpglog axes rf this i8 truly O(n') time, this graph

strouli aipeaiara st.aight line with slope two. Is this the case? How do you estimate the slope?

5. Lab4-5 is a program which rccursively calculatas 2n via repeated additions' It does this very

poorly from a bigoh point of view and runs with a timQ of O(2n)' Belaus€ this algorithm has a

iin-tirne which lrowi vcry rapidly, run through Threads with three rep€titions for n=10,11'12'13

and 14. Notice that the ru;-time approximstely doubles every time n is increased by 1' Record
your table values below:

Change your graph of the above dala to plot on Linear-log axes' If this is truly O(2tr) time' this

grapb,should appear as a straight line. Is lhis the case?

ApD.nds C Dala ShdG t2b Mdul

6. Answer the followitrg questions after rgflecting on the results of the five tests that you have run.

How accurately did the results you obtained agree to tho rcsults thal you expeeted? In which cases
was the ageement the greatest and which cases the least?

What explanations might there bc for the discrepancy between thc cxp€ctcd rcsults and the
observed rEsults in thes€ experiments?

How do you explain the variancc, if any, in the times reported when the same experiment is
repeated several times?

App@ds c Drta stnmG L:b Meual paec 4l

Data Structures

Laboratory 5 - Big Oh Determination

This labontory rcquircs you to analyze lO different test proglams to determine the big-oh of the
running time. You will f,rst be asked to determino the runnilg time by analyzing the code for the
function and then you arc to verify your hypothesis by using Threads. A useful fact for working
with logarithms in this lab is the following identity that car be used to convert logs from base a to
base b:

function Testl (n: integer) feturn integer is
count : integer: =0;
newn : integer: =n/2;
begin

while newn>o foop
. ^ r rn t - . =^^1 ln t -+ 1 !

newnt=nevrn/2;
end loop;

what is the running timc for this function in big-oh notation? Justify your answer

Show results ftom running 0is functior through Threads. How does this verify or conaadict your
previous answer? Change your hypothesis if rccessary. Hint: try n=1,2,3,4,5,6,7,8 and se€ if any
pattem emerges that is helpful.

. toz^n
roe'" =

@i

ADMdir C Data structu@ tib Mdual

function Test2 (n: integer) return ineeqer is
count : integer: =0;
newn : integer: =n;
begin

white neun>0 loop
cor.mt : =count+1;
newn:=newn-l;

end loop;
reEurn counE;

end Test2;

wlrat is the running time for this function in big-oh notation? Justify your answer'

show rssults from running this function through Theads. How docs this velify or contradict your

pEvious answer? Chang€ your hyPothesis if nec€ssary

function Tesu3 (!r: integer) return integer is

arMdn C D6ra $rctug trb M@u.r

cou4t : integer: =0;
begin

fo r i in 1 . .n looP
count: =count+Test1 (n) t

end loop;
recurn count;

end Test3;

What i6 the running timo for this function in big-oh notation? Justify your answer.

Show rcsults from running this function thrcugh Threads. How does this vgriry or contndict your
previous answer? Change your hypothesis if necessary

function Test4 (n: integer) return integer is
count : integer: =0 t

Appcrdii C Daia $tuctG kb M@ual

begin
fo r j - in 1 . -n looP

colmt: =count+Test2 (B) ;
end loop;
return count;

end Test4;

What is the running time for this function in big-oh notation? Justify your answer.

Show results ftom running ttris function thmugh Threads. How does this veriry or conhadict your
previous answer? Change your hypothesis if nccessary

function Tests (n: integer) return inleger is

count : j.nteger: =0;
begin

ApFldii C tu Si.lduq bb Mdu.l

fo ! i in 1 . -n loop
courrt: =count+Test4 (n) ;

end loop;
recurn counE;

end Test5;

What is the running time for this function in big-oh notatiol? Justify your answer.

Show results from running this function through Threads. How does this vedfy or contradict your
previous answer? Chang! your hypothesis if necEssary

functsion Test6 (n: integer) return inbeger i5
^ ^ ' ' - r - i n t A d a r . = n :

newn ; integer: =!/2;
begin

ApFndn C tu! sirud|s Lab Meu.t

Show rcsults ftom ruBning this function through Threads. Caution: don't try to run this with n
gr€alor than 20. How does this verify or contadict your previous answer? Change your hypothe-
sis if nec€Esary

while neltrr>o loop
count:=counu+test1(n) ;
rrewn: =newn/ 2 ;

end loop;

end Test6;

What is the running time for this function in big-oh notation? Justify your aNwer.

function TestT (n: integier) return intseger is

count : inLeger: =0;

begin
if n>0 then

count: =count+test7 (!-1) +1;

App@dix C Dala St ndu6 t b M@od !4ge49

e lse
count : =0;

end if;
return count;

end TesgT;

What is the runniry time for this function in big-oh notation? Justiry your answcr.

Show rcsults from running this function through Thrcads. How does this veriry or contradict your

F€vious answer? Change your hypothesis if nccessary

function TestS (n: i4teger) return intege! is
count : ineeger: =0;
nelvn : integef: =n;

begin
if n>0 then

count: =count+testg (n-L) +Eestg (n-1) ;

,{@ndir C Dab St udl@ hb Mau.r pag.50

e lse
count: =1;

end if;
return count;

end TeseS;

What is the running time for this futrction in big-oh notati'on? Justi$ your answer

Show rcsults ftom running this function through Th€ads. Ho}l' does this vedfy or contadict your

previous answet? Change your hypothesis if nepessary

fu.nction Testg (n: integer) return inceger j-s

count : integer: =0 t
begin

if n>1 then
counL: =count+test9 (n/2) +1;

e lse
count : =0 ;

ApFdn C Dars stru@ Lrb Meutl

end if;
recurn count;

end Bestg;

What is the ru,nning tfune for this &mction in big.ot| nofafion? Justify your answet

Show rcsulls ftom running this fimctioa thrc4b Threads. IIow does this Yerify or corltadict your
previou answc(? Chsnge your hypob€sis if o€c€ssa'ry

A9p@dr C Drr. SlrudhtrEr Lltb M!!'El p6€p 52

Data Structures

Laboratory 6 - Stacks and Queues

For this laboratory you will be introduced to algorithm animation ln order to do this we will use

the special softwaxc package called XTango.

1. Run Xlango for the Post Office simulation. In order to do this you need to type the command

/]nori.e / csci286 /xtango/anims /post

In this case, we simulate a Post offico with n serving stations, where n is an input to the program'

A simulation is then run ani you will be asked to observe the total waiting time for the 25 custom-

ers that ale served. The file that contains the aniYal times that you will use is

/hone/csci2 85 /Po . dat.
Record the total waiting times in the table below:

Number of Stations Total Wait Time

I

2

3

4

what is the limit in the siz€ of queue allowed in this simulation? In other words, after the queue

rgaches a certain size, customers no longgr enter the system What is that sizo?

Did vou notice arv inefficiencies in the way the queueing systems works? What could be done to

make the oueues operate more emciently, that is. with less toral wail time?

App.ndix C Data SlrudJA lab Mdual

3. The Ada program for converting a string from infix to postfix form is given below:

while not end_of_iBput loop
d a r - / h a v f c l m h ^ l I .

if operand (next_syrnbol) then
h r l i - l h a v i - c r h h ^ - l I

elsif next,stanbol= ') ' then
w h i l e t o p (s t a c k / = ' (' l o o p

h r r f / h ^ h l c f : ^ L \ \ .

end foop;
pop (s tack) ;

e Ise
while not Empty(stack) and then

Priority(next*s\anbot) <= Priority (top (stack)) loop
i f t o p (s t a c k) / = ') ' t h e n

n r r F / n ^ ^ / c F . ^ L \ \

a n A i f .

end loop;
h r l c } l / n a v i - c l m } \ ^ l I

end i f ;
end loop;
lvhi le not empty(stack) loop

h , ' t r h ^ h / c f - - L \ \ .

end loop;

The priorities used for the operands in this algodthm arc given in the following table:

Operand
(

+ -

Priority
2
I
0

In this algorithm, get means got the next character ftom the input stream and put means put the
next character to the output stream. Push and pop refer to operations on a separate stack.

Run the XTango animation for this program by typing

/ho e / csci286 / xtango/anims /postfix

Run this for the input stream a+b to see how the algorithm operates.

To see how parentheses are handled, run XTango fof the inPut strearn a+(b*c).

To see how priodty is used, run XTango for the input streams a+b*c and a*b+c-

Make up a complex expression that contains at least 5 operators and uses both parentheses and
priodty. Write your expressio[in the space blow:

App€ndix C Dall Skuctu€s bb Mdual

Run through the algorithm by ha[d ad F€diot tho psttlting ouFut saeatn below:

Now ruo the algodthn in Xlango and vedry your result.

Agpddn C De $rufiGr L.b Mrnu.l

Data Structures

Laboratory 7 - Comparison of AYL and BST

For this laboratory, you will be using THREADS to comparc the use of AVL trees and Binary
Search trees without balancitg. Ttvo proglams are providod in the Method menu of THREADS
which you will use fo. this lab. They are TbstAVL and TestBST. They retum the rotal depth of all
of the nodes in a binary search ftee with X nodes generated at random.

l. Run TesEST to generate binary search tre€s for sample sizes 100,200,400,800,1600,3200. Run
the expcrimcnt thre€ times for each sample size.
(a) Ent€r the values you obtained b€low

(b) Make a graph of the values you obtained. Doos the graph look linear?

(c) Now we will perfonn a more sophisticatcd test for lin€arity, usiBg the "Coefficients" button on
THREADS. Generate the coefficients for n, nlogn, and power. What conclusions do you draw
from your results as to the growth late of the total depth of all nodes in a random binary search
ttee?

Apladir C Dala Srmct@ lr! Meuat

2. Now repeat the above expedm€lt for TestAvL. First clear out your table in THREADS, then
rerun all of the experiments.
(a) Write your results below:

O) How do these values compare with the values you obtaincd for TestBST? How do you explain
this comparison?

(c) Run your data through "Coeffrcient" agafu for n, nlogn, and power. How does this compare
with what you obseryed for TestBsT?

App.trda C DaE Sm|l:lrc bb Meu.l

3. Now we'rc going to place the entries in the hee in all odercd fashiol That is' we arc going to

insqt into the tlee from smallest to largcst. You set the ord€r by changing "Sample Odef in
. THREADS to 100. GlOo woutd do the same, but placa the values in descending order.) Do this

and rerun tlre experimelts for TestAvl.

(a) Entcr the r€sults below:

(b) Use coefficicnts to obscrve the growth rate of this data. What do you observe?

4. Now rcpeat the same ploc€ss for TestBST. This time, limit your sample sizes to 100'200,400'
and 800.
(a) Repott your results below:

O) Use co€fficients to observc the growth rat€. what do you observe? Hon'do you explain this?

(c) Why did I not have you rull this experiment for sample siz'es $eater than 800?

ADHda c Dlh Srrcr6 r2b Mdual

5. Now try the sams experiment with the saryle only partially ordered- You can do this if you set
Sample Order to 20. This moans that the fiIst 20% of the sample is in order and the remainder is
randonL Now rerun the experiment in 4 using this ordering.
(a) Repod your results below:

(b)Use Coeffrcients to estimate thg growlh rate. What do you s€e and what is your estimale?

(c) What havc you leamed from this entire laborstory?

Appordix C Dr|! Sirud'G rlb M6url p.Ce 59

Data Structures

Laboratory 8 - Sort ComParisons

For this laboratory, you will be using THRBADS to compare various soding methods- The five

sort mothods that we will comparc ars Merye Sort, Shell Sort, Heap Sort, Quicksort, and Inser-
tions Sort.

l. Run Sortl, Merge SoIt, and observe the elapsed time for Sortilg 1,000 to l0'000 values in steps
of 1,000.

(a) Enler the timo for 10,000 b€low;

(b) This sort is Merye Sort which is supposcd to be an n log n sort. Use the Co€fficient button of

Theads to test this hypothesis. Are the values you obtain fairly stable? Do you conclude that your

observations are n log n?

(c) Now rerun tho sorts for sample size 10,000, but usc ordered data. What was the time that you

observed for 10,000? Is this an improvement over the time observed in (a)?

(d) FinaUy, run Sortl for 10,000 sample size with the values in rcverse order (SamPle order = -

100). How does this comPale to the times observed in (a) and (c)?

Agpadix c D!r! stm.nq I:b Meual

2. Run Sort2, Shell Sort, and observe the elapsed time for sorting 1,000 to lO,0O0 values in steps
of 1.000.

(a) Enter the time for 10,000 trelow:

(b) This sort is Shell Sort which has an underemined big Oh. Us€ the Coefficient button of
Threads to make an hypothesis about its big Oh. What would bc your best estimaie?

(c) Now rerun the sorts for sample size 10,000, but use ordered data What was the time that you
observed for 10,000? Is this an improvemeot over the time observcd in (a)?

(d) Finally, run Sort2 for 10,000 sample size with the values in rcverse order (Sample Order = -
100). How does this compare to the times observed in (a) and (c)?

A@dn C Drn! SIructUB kh Maual

3. Run Sod3, Heap Sort, and observe the elapsed time for sorting 1,000 to 10,000 values itr sieps
of 1.000.

(a) Enter the time for 10,000 below:

(b) This sort is Heap Sort which is supposod to be an n log n sort. Use the Coefficient button of
Threads to test this hypothesis. Are the valuos you obtain fairly stable? Do you conclude that your
observations are n log n?

(c) Now rerun the sorts for sample size 10,000, but use ordered data. What was the time that you
observed for 10,000? Is this an improvement over the time observed in (a)?

(d) Finally, run Sort3 for 10,000 sampl€ size with the values in reversc order (Sample Order = -
100). How does this comparc to the times observed in (a) and (c)?

Appddix C Dar! Struc{G tlb Meu.t

4. Run Sort4 Quicksort, and observe tbe elapsed time for sorting 1,000 to 10'000 values in steps

of 1,000.

(a) Enter tho time for 10,000 below:

O) This sort is Quicksort which is supposed to be an n log ll sort Usc the Coofficient button of

ftrt
"a"

to tt"t Oit ttypotlesis. AIe the values you obtain fairly stable? Do you conclude that your

observations are n log n?

(c) Now rerun the sorts for sample siz€ l0,OO0, but us€ ordercd dala What was the time that you

observed for t0,000? Is this an imprcvcment over the time observed in (a)?

(d) Finally, run Sod4 for 10,000 sample size with the values in rcvels€ order (SamPle Order = -

itio). ttow aocs Ois conparc to the times obscrved in (a) and (c)?

ApFadncDltrstuctrBt blrdual pag.63

5. Rutr Soft5, INertion sort aIld observe the elapsed time for sottiog 1,000 to 5,000 values in
steps of 1,000. The reason that we use 5,000 instoad of 10,000 will become obvious.

(a) Enter the time for 5,0ff below:

O) This sort is Insertion Sort which is suppos€d to be an nz sort. Use tbc Coefficient button of
Thrcads to test this hypothesis, Are the values you obtain fairty stable? Do you concluds that your

obscrvations are n2?

(c) Now rsrun the sorts for sample sizes 1,000 to 10,000, but uso ordered data. What was the time
thal you obscrved for 5,000? Is this an inprovemcnt over 0re time observed in (aX

(d) Fina y, run SorB for 5,000 sample size wiih the values in revers€ order (Sample Order = -
100). How does this comparc to the times obsewed in (a) and (c)? Do you have any explanation
for this?

ApFodir C Dlb Sl'wtEr trb Msul

