DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON, VA 22203-1714

January 16, 1992

Herbert L. Dershem

Department of Computer Science
Hope College

Holland, MI 49423

Subject : BAA Pronogal
Use of Ada, Laboratories, and Visualization in the Teaching of Data Structures
Log# 25
SISTO, BAA 91-18

Dear Mr. Dershem:

This letter is in reference to your proposal submitted in response to the Commerce Business Daily
issue of 16 July 1991 for a DARPA-sponsored program of Curriculum Development in Software
Engineering and Ada, DARPA/CMO BAA 91-18.

Your proposal was evaluated in accordance with the criteria set forth in the announcement, and is
one of several determined to be a potential candidate for funding. Since it is not anticipated that
available funds will be sufficient to support all such proposals, we are unable to be more specific
at the present time, except to say that should your proposal then be selected for funding, you will
be contacted by our Contracts Management Office.

Thank you for your participation in this procurement. Your efforts in expressing the ideas and con-
cepts of your proposal are appreciated. We anticipate the publication of a new, Ada Undergraduate
Curriculum Broad Agency Announcement by the end of February. DARPA wishes to encourage
your participation in this and !l future prograins

LZW |
.
Dr. John F. Kramer

Program Manager
Software and Intelligent Systems Technology Office

cc: James M. Gentile

A. Cover Page

Broad Agency Announcement 91-18
CURRICULUM DEVELOPMENT IN SOFTWARE ENGINEERING AND ADA

Category 1 Propoé,al

Proposal Title: Use of Ada, Laboratories, and Visualization in the Teaching of Data Structures
and Discrete Mathematics

Technical Point of Contact: Herbert L. Dershem
Department of Computer Science
Hope College
Holland, MI 49423
(616) 394-7508
dershem@cs.hope.edu

Administrative Point of Contact: James M. Gentile
Dean for the Natural Sciences
Hope College
Holland, MI 49423
(616) 394-7714

&N
C_% HOPE COLLEGE DEAN FOR NATURAL SCIENCES

September 23, 1991

BAA #91-18
DARPA/SISTO

3701 North Fairfax Drive
Arlington, VA 22203-1714

TO WHOM IT MAY CONCERN:

It is with significant enthusiasm and excitement that I endorse the ideas and
concepts presented by the Department of Computer Science at Hope College in
this proposal entitled "Use of Ada, Laboratories, and Visualization in the Teaching
of Data Structures and Discrete Mathematics."

The program described in this proposal is timely and innovative. It will allow
students to more easily bridge perceived disciplinary gaps and it establishes a firm
foundation of connectedness for students studying mathematics and computer
science.” The property of connectedness in science and mathematics is crucial
because it provides the learner with a tangible means of knowing. The proposed
curricular endeavor is welcoming of students and it is understanding of the
variances in backgrounds that students bring with them from high school. It is
designed to meet students "where they are" and help students to achieve their
fullest potential of understanding.

Hope College is committed to support this program in every way. My office will
work with Professor Dershem in a coordinated fashion to insure programmatic
success.

We are thankful for the opportunity to submit this proposal and we look forward
to developing a vital program that will provide students with the tools necessary
for future success in computer science.

Sincerely,

ﬁ?ﬁﬁ‘f«. Geé h.D.

" Dean for the Natural Sciences and
The Kenneth G. Herrick Professor of Biology

JIMG:b

HOLLAND, MICHIGAN 49423-3698 / 616-394-7714

B. Description of the Project
Summary of Project

The proposed proj' ect is for the development of a new course in Data Structures that includes the
following features:

1. The use of Ada to aid in the development of the concept of Abstract Data Types.

2. A laboratory component where students would meet in a laboratory setting once a week to
carry out experiments in data structures.

3. The use of algorithm visualization and animation techniques for both classroom demonstration
and laboratory activities.

4. The integration of discrete mathematics topics into the course, including graph theory and
recurrence relations.

Current Situation

Hope College is a four-year liberal arts institution with enrollment of approximately 2,500. The
college has had a computer science department since 1974. The department presently consists
of four full-time faculty members, three of whom hold Ph.D. degrees in Computer Science. The
department graduated 14 majors in 1991 and will graduate a similar number in 1992.

The data structures course at Hope College is closely based on the CS7 course of ACM
Curriculum 78 [1] and CO2 course of the ACM Liberal Arts Curriculum [11]. It is taken by
Computer Science majors in the sophomore year, with Introduction to Computer Science and
Computer Science II as prerequisite courses. Since 1985, data structures has been taught with
Modula 2 as the primary programming language. Prior to that Pascal was used. Beginning in
1990, the computer science department began a curricular program that introduces the topics
commonly included in a discrete structures course into the first four courses of the computer
science curriculum, one of which is the data structures course. The discrete structures course,
which was taught within the mathematics department, was consequently eliminated as a
requirement for the computer science major.

Proposed Activities]

The proposed project would seek to develop materials to support a course in data structures that
would use Ada as the implementation language, integrate discrete mathematics topics into the
course, and provide laboratories that would engage the students in experimental work and
algorithm visualization. The Project Director would produce, as a result of this project, course
materials including syllabus, a lab manual, Ada software used in support of the laboratory, and

3

handouts supporting the discrete mathematics component of the course.

It is proposed that the course and laboratory design be completed and supporting software
written during the summer of 1992, that the course be taught and written laboratory exercises
be produced during the Spring Semester of 1993, and that the finished lab manual and a paper
describing the results of this curricular development be written during the summer of 1993.

Technical Approach and Rationale
1. Introduction of Ada as the primary language in a Data Structures course.

The use of Ada in the data structures course has been pioneered by Feldman [9] and more
recently advocated by Silver [13]. The advantages of Ada as outlined in [10] include the
following:

1. Data abstraction is enhanced by the ability to return any structure as the result of a
function.

2. Packages allow for the implementation of ADTs along with the separation of
specification from implementation.

3. Private types enhance the ability to implement encapsulation.

4. Generics enable the students to work at an higher level of abstraction in the
construction of ADTs.

5. Exception handling can be included as an integral part of the ADT.

In addition, an early exposure to Ada in the Computer Science curriculum makes that language
available as a tool in all later courses. In particular, Ada is already used as a primary language
in the programming languages and concurrent systems courses, and its use in data structures
would reduce the amount of time needed in these later courses to familiarize the students with
Ada. Furthermore, students would be more likely to choose Ada in later courses where they
have a choice of which language to use. .

2. Introduction of a laboratory component into the data structures course.

A significant amount of attention has been given in recent computer science curriculum studies
to the introduction of laboratory experiences [3] [14]. At Hope College, we have already begun
efforts to introduce laboratories into the first two courses in the curriculum, that is, those that
are prerequisites to the data structures course. Based on the success of those implementations
and the recommendations of the ACM Curriculum committee, we propose the extension of the
laboratory approach to the data structures course.

The present data structures course meets for three hours of lecture per week. The proposed
course would meet for a two-hour laboratory in addition to the three hours of lecture. The
number of credit hours for the course would be increased from three to four. In the laboratory,
the students would be provided with a workstation and the activities would be specified in a
written lab description and through verbal instructions from the instructor. The laboratory
activities would include, but not be limited to, the following: ;

Implementing applications in Ada using provided ADTs.

Conducting'experiments through the observation of timings of various algorithms to
hypothesize or verify the run-time efficiency.

Observing the change in behavior in algorithms when different data structures or different
implementations are used.

Analyzing the behavior of algorithms and data structures through the use of visualization
and animation software.

Illustrating and emphasize mathematical concepts through the use of computer
simulations.

3. The use of algorithm visualization and animation software.

We have already begun exploring the use of algorithm visualization and animation software in
laboratories at Hope College in the Introduction to Computer Science course and in the
Algorithms course. This technique has been used with great success by others as well [2] [12].

We propose integrating the use of this software to provide laboratory experiences and classroom
demonstrations in the data structures course.

Because visualization reveals patterns in the changing distribution of an array of values as they
are being sorted, it can aid students in doing in-depth analysis and comparison of sorting
algorithms. Complicated schemes for implementing balanced search trees can be understood
more clearly through graphics display and animation of the tree structures. Algorithms for
searching and performing computations on graphs can also be illustrated at the conceptual and
intuitive level through visualization techniques. For large data structures, graphical display of
statistical information can lead to a better understanding of the asymptotic behavior of
algorithms.

4. Inclusion of mathematics in the data structures course.
Discrete mathematics plays an important role in a data structures course. The approach we are

implementing for providing computer science students with an adequate background in discrete
mathematics is through the inclusion of the mathematics material in the first four courses in the

computer science sequence. This has several advantages over the offering of a separate course
on discrete mathematics: (1) The mathematics that is needed in the computer science curriculum
is covered prior to or at the same time as the computer science topic that needs it; (2) The
students learn the mathematics in the context of its application in computer science, prov1dmg
additional motivation for learning it; (3) The computer can be utilized as a tool to assist in
learning the mathematics through computer simulation.

Previous Related Work

Professor Dershem has been active in computer science curriculum development for more than
twenty years. His first activity was in the design of a course that combined the teaching of
statistics and computer science [4]. His work on that project was supported by a grant from the
National Science foundation and resulted in the publication of a laboratory manual for use in
such a course [5].

Professor Dershem was also funded by NSF for the development of a modular approach to the
teaching of introductory computer science [6]. As a part of this project, two modules on
problem solving were produced [7] [8].

More recently, Professor Dershem has co-authored a programming languages text that uses Ada
as the primary language for the discussion of imperative language concepts [10]. This text has
been used at Hope College for the past four years in both its pre-publication and published
forms.

Professor Dershem has also been active in curriculum development and in the activities of .the
Special Interest Group on Computer Science Education (SIGCSE) of the ACM. He served as
program chair of the 1988 SIGCSE Symposium and edited the proceedings of that symposium
[9].

Facilities

Three computer networks are in place on the Hope campus on which this project could be
implemented. The choice of the platform for these activities will be made based on the status
of these networks at the time of implementation. The three networks, which we will call the
Sun, VAX, and PC networks, are described in the Appendix of this proposal. The college
already has the Verdix VADS Ada environment available on the VAX network. If the Sun or
the PC networks are used for implementation, then Hope College will purchase a suitable Ada
environment for use on the chosen system.

If the VAX or PC networks are chosen for implementation, labs will meet in a classroom set
up on campus that contains 28 Swan 386SX microcomputers that are on a local area network.
These computers are arranged in a classroom setting suitable for conducting the lab described
in this proposal. Each of these systems also has communications capabilities with the VAX
network so that the use of either the PCs or the VAX can be implemented in this laboratory.

The Physics and Mathematics departments at Hope College recently received a grant from the
NSF ILI program for the establishment of a laboratory of 20 X-terminals for the instruction of
calculus and physics. The exact nature of this laboratory has not yet been determined, but it is
possible that this laboratory, with the terminals connected to the Computer Science department’s
Sun network, could be used for the laboratory activities of this project.

The decision as to which facilities to use will be made after the specifications and availability
of the X-terminal laboratory have been determined. Algorithm visualization and animation
development software available on Hope College systems includes GAIGS on PC systems and
TANGO on the Suns.

Bibliography

[1] ACM Curriculum Committee on Computer Science, Curriculum ’78: Recommendations for
the undergraduate program in computer science, CACM, 22(3): 147-166, March 1979.

[2] Brown, M.H., Algorithm Animation, Cambridge, MA, MIT Press, 1987.

[3] Denning, P.J., Comer, D.E., Gries, D., Mulder, M.C., Tucker, A.B., Turner, A.J ., and
Young, P.R., Computing as a discipline, CACM, 32(1):9-23, January, 1989.

[4] Dershem, H.L., A course on computing and statistics for social science, Proceedings of 1972
Conference on Computers in the Undergraduate Curricula, Atlanta, GA, 1972.

[5] Dershem, H.L., Computer Exercises for Elementary Statistics, Wentworth, NH, Compress,
Inc., 1979.

[6] Dershem, H.L., A modular introductory computer science course, SIGCSE Bulletin,
13(1):177-181, February, 1981.

[7] Dershem, H.L., UMAP Module 477: Computer Problem Solving, Cambridge, MA,
Birkhauser Boston, Inc., 1981.

[8] Dershem, H.L., UMAP Module 478: Iteration and Computer Problem Solving, Cambridge,
MA, Birkhauser Boston, Inc., 1981.

[9] Dershem, H.L. (ed.), Proceedings of the Nineteenth SIGCSE Technical Symposium,
Association for Computing Machinery, 1988.

[10] Dershem, H.L. and Jipping, M.J., Programming Languages: Models and Structures,
Belmont, CA, Wadsworth Publishing Company, 1990.

[11] Feldman, M.B., Data Abstraction with Ada, Reston, VA, Reston Publishing Company,
1985.

[12] Feldman, M.B., Teaching data structures with Ada: an eight year perspective, SIGCSE—
Bulletin, 23(1):337-340, March, 1991.

[13] Gibbs, N.E. and Tucker, A.B., Model curriculum for a liberal arts degree in computer
science, CACM, 29(3):202-210, March, 1986.

[14] Naps, T.L. Algorithm visualization in computer science laboratories, SIGCSE Bulletin,
22(1):105-110, February, 1990.

[15] Silver, J.L., Using Ada to specify and evaluate projects in a data structures course, SIGCSE
Bulletin, 23(1):337-340, March, 1991.

[16] Tucker, A.B. et al (eds.), Computing Curricula 1991: Report of the ACM/IEEE-CS Joint
Curriculum Task Force, New York, ACM Press, 1991.

7

Section C. Summary of Deliverables
1. Laboratory Manual for Use in Data Structures Course.

A laboratory manual suitable for use in conjunction with a data structures course will be
developed as a part of this project. This manual will contain a description of at least 20
laboratory projects which can be carried out in a supervised lab setting, or alternatively, can be
given as outside-of-class assignments. These laboratories will include developing applications
using prepared Ada packages, experimental comparison of algorithms and data structures to
observe and analyze run-time behavior, computer simulations to illustrate mathematical concepts,
and algorithm visualizations and animations. This laboratory manual will be published in a form
suitable for distribution to others interested in implementing a data structures laboratory and
provided upon request for the cost of production.

2. Ada packages to support the Data Structures Laboratories.

A number of Ada packages will be constructed for use in the laboratories. These will include
packages for stacks, queues, sequential lists, trees, and graphs. These packages will all be made
available to any interested parties for use in data structures or other relevant courses.

3. Visualizations and Animations.

All data structure and algorithm visualizations and animations developed for laboratories and
classroom demonstrations will be made available for use by others.

4, Paper for submission to SIGCSE Bulletin.
A description of the data structures course and the associated materials will be described in a

paper submitted to the SIGCSE Bulletin and for presentation at the SIGCSE Technical
Symposium.

D. Summary of Schedule and Milestones

All work on this project will be carried out by the Project Director with possible assistance-from
a student, contingent on the availability of local financial support for the student assistant.

Date
June 1992

July 1992

Jan-Apr 1993

May 1993

Activity
Design data structures course and laboratories

Write Ada packages, data structure visualizations,
and algorithm visualizations/animations to support
laboratories

Project Director will teach the newly designed
course and concurrently produce the laboratory
manual

Project Director will produce the final bound lab
manual and write paper about project for SIGCSE

E. Proprietary Claims to Results

The Project Director makes no proprietary claims to any results or other artifacts supporting and
necessary for the use of this course.

10

F, Qualifications of Project Director
CURRICULUM VITAE
Herbert L. Dershem

Education: ;
B.S. University of Dayton, 1965
M.S. (Computer Science) Purdue University, 1967
Ph.D. (Computer Science) Purdue University, 1969

Experience:
Hope College, Assistant Professor, 1969-74
Associate Professor, 1974-81
Professor, 1981-present
Chair of Computer Science Department, 1976-present
Oak Ridge National Laboratories, Visiting Research Scientist, 1977-78
Boston University Overseas Program, Visiting Professor, 1982-83

Honors and Awards:
NDEA Fellow, Purdue University, 1965-68
Honeywell Corporation Fellow, Purdue University, 1968-69
Project COMPUTe Awardee, Dartmouth College, 1972
NASA/ASEE Summer Fellow, Goddard Space Flight Center, 1976
Oak Ridge Associated Universities Summer Fellow, 1977

Granis:
Co-director, "Introduction of the Computer in the Statistics Curriculum®, NSF Office of
Computing Activities, 1971-73

Director, "A Modular Approach to the Introductory Course in Computer Science", NSF
Local Course Improvement Program, 1978-80

Co-Director, "A Microcomputer Laboratory for use in Teaching Statistics", NSF
Instructional Scientific Equipment Program, 1979-80

Director, "CSNET Membership in Support of Computer Science Research", NSF RUI
Program, 1987-90 -

Publications: (23 total, those pertinent to this project listed in Bibliography)
Other-major sources of support: None

Related proposals pending: None

11

G. Budget

June-July 1992

May 1993

Total Request

Project Director’s Salary
(2/9 academic year salary)

Benefits for Project Director
(30% of salary)

Project Director’s Salary
(1/9 academic year salary)

Benefits for Project Director
(30% of salary)

$11,800

$ 3,540

$ 5,900

$ 1,770

$23,010

A Hope College contribution will be providing 1/3 release time for the Project Director during
the Spring 1993 semester while he is teaching the course and writing the laboratory manual.
The approximate amount of that contribution would be 1/6 of the Project Director’s academic
year salary which would be $8,800 based on his 1991-92 salary. In addition, all hardware and
software needed to implement this project will be provided by Hope College.

12

H. Appendix - Description of Hope College Computer Networks

Computer Science Department Sun Network

Machine/Part - Peripherals

Sun 4/360 32 MB memory, 688 MB disk,2400 baud modem

Sun 4/470 32 MB memory, 669 MB disk

(2) Sun 4/40s 12/16 MB memory, 207 MB disk, 3.5" floppy

(8) Sun 4/60s 16 MB memory, 100 MB disk, 3.5" floppy, GX graphics
COprocessor

(3) Sun 4/65s 16 MB memory, 100 MB disk, 3.5" floppy

Sun 4/75 20 MB memory, 200 & 480 MB disk, 3.5" floppy

(32) INMOS Tranputers Parallel processing units housed in Sun 4/470

Lab software includes standard distributed SunOS/Unix software. This includes a distribution
of Sun’s OpenWindows, which is a version of the X windowing system. In addition, several
packages have been purchased from various vendors including FrameMaker, SunGKS,
SunPHIGS, SunLink DNI DECnet support software, Saber-C, DOS Windows, and Adobe
Transcript. INMOS languages and development software are available for the Tranputers. The
lab uses several public domain software packages including TEX, EMACS, and DECnet utilities.

The lab’s software and hardware provide access to the Internet through a college-owned Merit
SCP.

VAX Network

The college owns two VAX 4000 systems which serves the entire campus community for
academic, administrative, and library applications. This system is accessible from eleven
locations on campus which have a total of 144 stations that are publicly available for student
access. In addition, there are many other terminals available in offices and laboratories across

the campus.

A wide selection of software is available on the VAX systems including the Verdix VADS
system for Ada software development.

PC Network
There is a Novell local area network in the building complex where this project will be
conducted that connects 49 386SX systems through a common file server. Twenty-eight of these

systems are located in a computer classroom that includes 9 Epson printers, one HP Laserjet IIP
printer, and a projection system.

13

DATE: June 29, 1992
TO: Herb Dershem
FROM:= Kevin Kraay =
F—
SUBJECT » Defense Advanced Research Project Award

Congratulations on your approval for a Defense Advanced Research Project grant
in the amount of $23,010 for the project entitled "Undergraduate Course
Development in Software Science and ADA."

The account number 5-22655 has been assigned to this grant. Please use this
number for all expenses associated with the grant.

Will you please send me a copy of the budget and Section C of the Technical
Proposal for this grant. The account number will be activated when the budget
information is received and entered into the Financial Record Systems.

The Drug-Free Workplace Act of 1988 requires Hope College to certify that we
will maintain a drug-free workplace, This certification took place on the
application for the NSF grant which you were awarded.

It also requires the College to provide to each employee working with a
Federally sponsored program the College’'s policy on drugs. A copy of this
policy is attached for your reference.

Please contact me if you have any questions.

((_:3 HOPE C‘)LLEGE DEPARTMENT OF COMPUTER SCIENCE

August 13, 1992

Angela M. Coonce

Grants Officer

Defense Advanced Research Projects Agency
Contracts Management Office

3701 North Fairfax Drive

Arlington, VA 22203-1714

Dear Ms. Coonce:

This letter is to make formal the request that I made to you in a telephone conversation last
month.

I request that the DARPA grant number MDA972-92-J-1030 to Hope College have its ter-
mination date changed from June 18, 1993 to June 18, 1994. The reason for this request is
that due to the late date that I was informed of the awarding of this grant, I was unable
to complete the activities of the grant originally scheduled for the summer of 1992. This
requires me to push the schedule of the grant back one entire year. My schedule, a revised
version of that found on page 9 of my proposal, is as follows:

Date Activity

Jan-Apr 1993 Project Director will teach course using Ada and generate ideas

for laboratories.

May 1993 Design data structures course and laboratories.

June 1993 Write Ada packages, data structure visualizations,
and algorithm visualizations/animations to support
laboratories.

Jan-Apr 1994 Project Director will teach the newly designed
course and concurrently produce the laboratory
manual.

May 1994 Project Director will produce the final bound lab
manual and write paper about project for SIGCSE.

If you have any questions about this request, please contact me so that we can discuss them.
Thank you for all of your help on this matter. It has been a pleasure working with you.

Sincerely,

ALY sl

Herbert L. Dershem

HOLLAND, MICHIGAN 49423-3698 / 616-394-7510

MEMORANDUM

Date: August 19, 1992

To: Greg Olgers

From: Herb Dershem%

Subject: Information for a news release for a grant received recently

Grrey,
Here is some information about a grant that I received recently. Give me a call if you need
additional information.

Hope College has received a grant for $23,010 from the Defense Advanced Research Projects
Agency (DARPA). The project director will be Professor Herbert L. Dershem, chairperson
of the Hope College Computer Science Department. The title of the project is “Use of Ada,
Laboratories, and Visualization in the Teaching of Data Structures.”

The purpose of this project will be to introduce the use of the Ada language into the Hope
College Data Structures course through the inclusion of a laboratory with the course. The
laboratory will make entensive use of Ada and will include the illustration of data structure
concepts through the use of visualization and animation. The Hope College Computer
Science Sun Workstation laboratory will provide the facilities for the laboratories.

Professor Dershem will first offer the Data Structures course using Ada in the Spring 1993
semester. During the summer of 1993 he will design the laboratories to be included in the
course. In the Spring semester of 1994 those laboratories will be conducted for the first time.
In the summer of 1994, Professor Dershem will summarize his work in a scholarly paper and
produce a laboratory manual that can be used at other institutions.

Ada was developed in the late 1970s at the initiative of the U.S. Department of Defense.
The purpose was to save money my standardizing Defense software development to one
language. DARPA funds the learning of Ada by students to encourage more widespread use
of the language. Professor Dershem, along with Professor Michael Jipping, has written a
programming languages textbook that is based on the Ada language.

This is the fifth external grant received by Hope’s Computer Science Department in the past
year. Four of these grants have been from federal agencies. In addition to this grant from
DARPA, grants have also been received from the National Science Foundation and NASA.

Hope College

Department of Computer Science
Holland, Michigan 49422-9000

(616) 394-7510

August 22, 1995

Mr. Edward Brown

DARPA Software & Intelligent Systems Technology Office

3701 North Fairfax Drive

Arlington, VA 22203-1714

Dear Mr. Brown:

Enclosed you will find two copies of the final report for DARPA grant MDA972-92-J-1030. The
software developed under this grant has been placed in the ASSET library at West Virginia Uni-

versity.

I appreciate the support I received for this project. I think that you will find the results to be use-
ful.

Please let me know if there is any other information that I can provide for you.

Sincerely,

Herbert L. Dershem, Chair

Copy: Kevin Kraay
Enclosure: 2 final reports

AdaVision and THREADS :

Algorithm Animations and Experimental Laboratories
for Teaching a Data Structures Course in Ada

Cheri J. Bowsher Darrick P. Brown
Dept. of Computer Science Dept. of Computer Science
Saint Joseph’s College Hope College
Rensselaer, IN 47978 Holland, MI 49423

Herbert L. Dershem
Dept. of Computer Science
Hope College
Holland, MI 49423

Abstract

The overall goal of this project is to continue the implementation of a laboratory
for the data structures course using Ada and algorithm visualization and animation
techniques. The work done here enhances the course and contributes to the learn-
ing success of enrolled students. The first half of the project, entitled AdaVision, is
an instructional aid consisting of two BTree algorithm animations. The second
half of the project describes a tool called THREADS, which is used to run experi-
ments on Ada data structures in a laboratory setting.

INTORDUCTION

The overall goal of this project is to implement a laboratory for the data structures course using
Ada, algorithm visualization and animation techniques, and algorithm measurement using a tool
called THREADS. Manuals have been developed to be used by students to guide their work in

the laboratory. The work done in this project enhances the course and contributes to the learning
success of the enrolled students.

Previous work on this project includes 6 completed algorithm animations and a basis for the
THREADS program. The previously created animat! s include linked list, infix to postfix con-
version, binary tree insert and delete, AVL tree insc - * . 1s with rotations, splay tree zig-zag and
zig-zig rotations, and AVL single and double rotations. Previous work on THREADS included
the creation of the interface and fundamental program routines.

The philosophy used in developin; the laboratory maintains that individual laboratory sessions be
closed, use Ada pacl2s, involve algorithm measurement experiments, and make use of algo-
rithm animation. A closed laboratory means that collectively, all students have a scheduled time
to work in the lab setting. An instrucior is also present at this time to aid and dircct their work.
Many of the Adn nackages ure alre:..! ; developed, and a.., packages that do not already exist can
be easily implemented by students. Thus, more data structures can be covered in the course.
The animations help studc..is beco:ne more familiar with algorithms and the experiments allow
students to experience different qualities of the algorithms. This paper focuses on the algorithm
animations and a tool used to run experiments on algorithms in the laboratory.

Laboratory Experiments: THREADS

Many experiments that are performed in the laboratories involve running tests on algorithms that
have been implemented using Ada packages. These tests produced results that can be measured

and analyzed. Working in the lab gives students the chance to be more directly involved in their
learning, increasing the amount of information they retain.

Some of the Ada packages will be written by the students themselves, but more are provided by
the instructor. In this way, the students are exposed to more data structures and algorithms. Stu-
dents will spend their time seeing and experiencing the effects of algorithms instead of actually
coding the algorithms and corresponding data structures. This should increase their ability to ana-
lyze the effectiveness and/or efficiency of different approaches to a problem.

Currently, experiments are planned for the following applications:

1) Big Oh Experiments

2) Comparison of different sorting algorithms

3) Binary search tree vs. AVL tree

4) Hash collision handling

5) Big Oh coefficient evaluation
In order to run these types of experiments in a laboratory setting, an appropriate tool is needed.
The major part of our project consists of the development of such a tool, named THREADS.

THREADS (Test Harness for Repetitive Experiments on Ada Data Structures) is a tool that can be
used to run tests on data structures and algorithms, reporting back :.; the user some type of the

measurement of the test. The tests are ‘black box’ programs that are implemented separately, and
may be tested and run separately as well.

How the Student Uses THREADS

The basic idea behind THREADS is illustrated by the following chart

Data Set » Black Box

T THREADS |«

THREADS generates a data set based on information given by the user. This data set isused by a
black box to run one experiment. Upon the black box’s completion, it returns to THREADS the
sample size of the data set and an integer measurement of the test. The measurement will be

included in a table that keeps track of each experiment the user runs.

Running THREADS brings up the interface shown in Figure 12. All information needed for the
data set is input in the appropriate places by the user. The parameters the user may designate are
as follows:
Method: The black box to use for the experiment
White to File: The named file where the data set is stored. If no file is designated, a
temporary default file will be used.
Write Path: The path to the directory where all data and files will be written.
Use File: The path and name of a data set to be used ia place of a file generated by
THREADS.
Sample Size: The number of elements in the data set.
Sample Distribution: The statistical probability distribution used to generated the random
data set.
Sample Order: The extent of ordering imposed on elements in the data set.
The default settings are for a 100 element, com'~tely unsorted data set generated randomly from
a uniform random distribution.

Method

The black box process is spawned by the THREADS process. When THREADS executes a black
box, it gives the black box a data set generated by THREADS. It then waits for the black box to
return. When the black box returns, THREADS takes the data and writes it to the Table of Mea-
surements. The black box returns 2 integers. The first is the size of the data set and the second is
the measurement that the black box returns.

The meaning of the measurement returned by the black box will vary depending on which black
box is being run. In some cases the measurement may be the number of comparisons that were
performed in a sort routine. In the case of the binary search tree experiments, the measurement
represents the average depth of a node in the t-ce. In all cases, however, the mz2surement will be
a non-negative integer useful in analyzing the effectiveness or efficiency of a cortain data struc-
ture or algorithm for a particular data set. The measurements returned from different experiments
can then be compared against each other to aid the user’s analysis.

Write to File
The text field labeled “Write to File:” takes a name as input. If a name is specified, the generated

data set will be saved to a file with that name in the directory specified in the “Write Path:” text
field. If no name is specified, the data set will be saved to a temporary file.

Write Path

The “Write Path:” text field takes a path string as input. THREADS will not operate until a valid
path is given. The path string needs to be a path where the user has read and write permissions.
THREADS reads and writes many data files. If it cannot read and write its data, it will not work
properly. If the user attempts to run a black box without suppling the write path, a notice prompt
will appear and notify the user to supply THREADS with the appropriate information.

e

X: Sanple Size Miasurement

o o o e e ——— o o

Figure 12

Use File

The “Use File:” text field takes a string as input. This text string must contain the entire path and
name of the data file to be used. If a valid path and name is given, THREADS will use this data
set for the black box instead of generating a new data set. THREADS will use a specified data set

before generating a new data set. Therefore, if the user wishes to generate a new data set, the
string in the “Use File” text field must be deleted.

Sample Size

The sample size field allows the user to enter the number of elements to be included in the data
set, ranging from 1 to 10000. The sample size may be changed by using the mouse to click on the
up-down arrows, or by manually entering the size into the text field. The default is 100 elements.

Sample Distribution
Sample distribution indicates the type of randomness in which the data elements are to be distrib-
uted. There arc six different distributions to choose from.

1) Uniform.

2) Exponential.

3) Normal

4) Gamma

5) .-oisson

6) Linom!
To the right of the . ‘s Distribution, there is « button labeled ‘Distribution Parameters’. If this
button is clicked a v,ow panel with number fields will appear (Figure 13).

(Figure 13)
With this distribution window panel, the user can modify the distributions by changing the param-
eters for each distribution. -

These distr:butions can be used to evaluate how the distribution of data can affect different data
structures. For most cases, Uniform distribution is sufficient. Future work on distributions
includes the development of black boxes that fully utilize the Sample Distribution feature of

THREADS.

Sample Order

The sample order refers to the degree of order the user would like in the data set to be generated,
ranging from -100 to 100. A sample order of 100 means that 100% of the data will be in increas-
ing sorted order. A sample order of -100 means that 100% of the data is in decreasing sorted
order. A sample order of zero means that the data is in perfectly random order. Any value
between -100 and 100 is acceptable. A value of 50 means that the first 50% of the data is in
increasing sorted order, the remainder is in random order.

Data Set

The data set is generated based on the information from the sample size, distribution, and order
fields. The elements are randomly generated to fulfill the user’s requirements. A data set can also
come from a imported data set using the “Use File:” text field by supplying a path and name.

Table of Measurements

Since data ¢ :s may be saved in files designated by the user, experiments may be repeated. The
table of measurements from an experiment sessicn may also be saved, so the user may come back
to the data at a later time to continue analysis or even add to the previous experiment record.
Tables are saved by clicking the right mouse button while on the table. From the ‘File’ menu,
choose the option ‘Save as...” and a save window will appear. To load in a previously saved table,
choose the option ‘Open’ from the ‘File’ menu.

Run Experiment

When the ‘Run Experiment’ button is clicked, the data set is generated and written to the appro-
priate file. Next, the black box process is spawned and cxecuted. When the black box finishes, the
sample size and measurement are written to the table of measurements. If the user has not pro-
vided THREADS with the appropriate informa.:. . , the user will be notified to do so and no
experiment will be run. If the black box aborts or crushes, the user will be notified that there was
an error in the black box and no data will be written to the table.

View Graph
When the “View Graph’ button is clicked, the measurements currently in the table will be used as
the coordinates for a graph. Graphs are generated using ‘xvgr’ and may be created at any point in

the experiment session. Each graph is produced in its own window with a unique title, which
allows for easy comparison between graphs.

Clear Table

The ‘Clear Table’ button allows the user to clear the table at any point during a THREADS ses-
sion. This enables the user to start a new set of experiments at any time. When the ‘Clear Table’
button is clicked a prompt will appear asking if they really want to clear the table. If “Clear

Table” is selected, the table will be cleared. If cancel is selected, the user will be returned to
THREADS with no changes.

Coefficients

If the ‘Coefficients’ button is clicked, a small window with five buttons will appear (Figure 14).

The five buttons are log(n), n, nlog(n), nZ, and n to some power. ‘n’ being the sample size. If one
of these buttons is clicked, an xterm will appear displaying the coefficients of that particular Big
Oh of the data in the table. For example, if the data in the table is:

100 600
If the n? button is clicked, the xterm will appear displaying:
100 600 6.000000000E-02

This means that with n=100 and y=600, an expression of the form y=cn? would require c to be
6.0000000E-02. If this coefficient remains relatively constant over many values of n, the function
represented is a good candidate for the big-oh function of the black box process.

Figure 14

Help
Help may be found both by clicking the ‘Help’ button on the THREADS window, or by pressing
the help key on the keyboard. The button on the THREADS window will open a pop-up window

that contains complete help text. Pushing the ‘help’ key on the keyboard will give a short sum-
mary of help for the spot on the window where the cursor is pointing.

Quit

If the ‘Quit’ button is clicked, a notice prompt will appear and ask if the user really wants to quit.
If cancel is selected, the user will be returned to the main THREADS program without any
changes. If ‘Quit’ is selected, THREADS will exit and close all windows. Also when
THREADS is quit, all temporary files will be deleted so no unwanted files remain in the specified

write path directory.

THREADS Tutorial

There is a small tutorial program that is included with THREADS. When this program is run a
window opens that displays the complete tutorial text in a scrollable area. This window is sized
so that it can be placed next to the THREADS window on the same screen for easy reference
when working with THREADS.

For the Instructor

THREADS is composed of 11 files and a Makefile. The files and their contents are as follows:
threads.G: Created by the graphical interface code generator, DevGuide 3.0.1.
threads_ui.h: Definitions of labels used to receive information about the UIT objects.
threads_ui.cc Sets up the interface, and begins waiting for events to process.
threads_stubs.cc: Callback functions for the various widgets on the interface. Also

contains any auxiliary functions needed by THREADS.

threads.info: Contains the help text retrieved by pressing the “Help” key on the
keyboard.

longhelp.info: Contains the complete help text displayed in the THREADS help
window.

threads.icon: Contains the graphical data for the THREADS icon.

threads.mask Contains the graphical data for the THREADS icon mask.

xvgr.prefs: Contains the preferences for xvgr.

coef.scpt: Contains the script that is called when one the coefficient buttons are
clicked.

arret.cc: A very small program that just waits until the user presses the Return

key; used in coef.scpt.

Black boxes may be added to THREADS with little effort. The spots where the code needs to be
modified are marked by comments of the form:
/¥ NEW METHODS: add any new methods here */

First, in the file threads_ui.cc, insert the line:
(void) :.::hdchoice.addChoice (“Method name”);
where ‘Method name’ is the name to appear on the menu in the interface. For each new method

added, a similar line must be inserted. The lines need to be added to the current listing of choices,
which is marked in the code.

Next, in the file threads_stubs.cc, add another “else if” condition of the form:
else if (stremp(method, “MethodFile”) == 0) {
strcat(command, “MethodName”);
}
In this section ‘MethodFile’ is the executable file . . . for the black box. Each new method needs
to have its own case in the “if-else if”’ statement.

New methods can also be used by placing them in the blackbox directory and typing the name of

the method executable in tl.: “Method:” text field. This is much easier from a programming
aspect, but this requires the user to type in the name instead of being able to select it from the
menu.

New types of distributions may be added in a similar fashion. The menu choices for “Sample Dis-
tribution” are added the same way as those for “Method.” A clear definition of what the distribu-
tion means and how it will affect random generation of integers will facilitate the changes in the
code of threads_stubs.cc.

In threads_stubs.cc, the system calls use the full path names to execute the black box and to use
the other include files. Check that these paths are correct, and change t!.>m as appropriate.

CONCLUSION

As future work on this project, further AdaVision animations could be created or animations
which is exist as part of the XTANGO package could be refined for the purpose of implementa-
tion into a data structures course. In regard to THREADS, further use of the “Sample Distribu-
tion” feature is yet to be found, and additional features may be added.

The use of AdaVision and THREADS in a laboratory setting is intended to involve students more
directly in their instruction than a classroom setting alone. The animations are intended to
improve students’ understanding of the data structures and algorithms being taught, and perform-
ing experiments on the algorithms allow the students to analyze and experience the effectiveness
and efficiency of different solutions to problems. It is hoped that this project does indeed enhance
a data structures course, helping instructors convey to students the abstract concepts of the course
and actively involve them in the instruction.

BIBLIOGRAPHY

Donovan, Tommy. “Getting Started with TANGO.” 1990.

Press, William H., Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling. Numerical Reci-
pes. Cambridge U..iversity Press, Cambridge, 1986.

Stasko, John T. “BWE Programmer’s Manual: TANGO.” Brown University, 1990.

Stasko, John T. “TANGO: A framework and system for algorithm aniruuiion.” Computer Vol. 23,
No. 5, p. 27-38, 1990.

Turner, Paul J. “ACE/gr User’s Manual: Graphics for exploratory data analysis.” Center for
Coastal and Land-Margin Research, Oregon Graduate Institu: - of Sci. and Tech., 1992,

Weiss, Mark A. Data Structures and Algorithm Analysis in Ada. Benjamin Cummings Publishing
Co. Inc., New York, 1993.

Algorithm Animations: AdaVision

AdaVision serves as a teaching tool for data structures courses taught in Ada by allowing students
to visualize data structure concepts, rather than try to learn and understand the concepts in an
abstract manner. Using the algorithm animation package XTANGO, two-dimensional, color ani-
mations are created by combining two files. The first file contains the implementation of the algo-
rithm being animated along with procedure calls to the second file, which consists of the
animation scenes. The structures and data involved in the algorithm implementation are repre-
sented in the animation scenes by images which move as a result of interesting events, such as the
insertion of a node into a linked list.

Some of the previous animations created for the AdaVision project display the corresponding Ada
code on the XTANGO window as the algorithm is being animated. This display of code enables
students to view the connection between Ada code and the action of algorithms on data and data
structures. At the beginning of an animation, the first line of Ada code is highlighted by a rectan-
gular image. Succeeding lines of code are then highlighted as they are executed within the algo-
rithm implementation, allowing students to observe the movement of images taking place in
conjunction with the highlighted code.

The two most current AdaVision animations illustrate insertions and deletions on a BTree. Due to
the complexity of the BTree algorithm, these animations do not include the corresponding Ada
code as part of their displays. Also due to complexity, and because the implementation is not nec-
essary for what the animations are intended to illustrate, the actual BTree algorithm is not imple-
mented into the file which normally would contain the algorithm implementation. Instead, each
animation merely demonstrates the possible actions that would be performed on a particular
BTree if an insertion or deletion were to occur.

Within each of the BTree animations, as a value is inserted or deleted, images which represent
nodes, links and values are repositioned accordingly. Nodes containing values that are not rele-
vant to the particular BTree demonstration are represented by empty, smaller-sized, rectangular
images, while nodes containing values which are necessary for the demonstration are represented
by non-empty, larger-sized, rectangular images. The condition of the particular BTree that is
shown depends on the user’s response to a series of questions regarding the BTree he or she
would like to view. These questions are asked in the form of a dialogue before an animation is
shown. Once the animation is displayed, a label describing the insertion or deletion being per-
formed is written near the bottom of the XTANGO window. Also, in the upper left corner of the
window is a display of text which indicates the value being inserted or deleted. The BTree dele-
tion animation additionally includes a short text phrase which explains what is occurring within
the BTree at the moment that the images are moving,.

BTree Insertion
The BTree insertion animation illustrates four possible ways for a value to be inserted into a

BTree: into a non-full leaf, a leaf whose parent is non-full, whose ancestor is non-full, or into the
leaf of a BTree which does not fit any of these cases, in which case the root is split. The anima-

tion contains a dialogue which asks the user questions regarding the type of BTree into which he
or she would like to see an insertion performed. Depending on the user’s response to the ques-
tions, the appropriate insertion simulation is shown.

The case in which the value “100” is inserted into a leaf whose parent is non-full is illustrated
below.

Insert 100

50 150 200

70 80 [0 110

LHSERTLOH XNTO A FULL WODE, PARENT NOT FULL

Figure 1. The original form of the BTree is displayed.

100

s0 1850 200

70 80 20 110

INSERTION THTO A FULL RODE. PARENT HOT FLLL

Figure 2. The value “100” moves down through the top of the tree.

50 150 200
.09

7o 80 90 110

THSERTTOM INTO A FULL HONE. PARENT NOT FULL

Figure 3. The value “100” moves down through the parent node.

50 150 200

‘

70 80 90100110

THSERTTOR LT A FULL NOTDE, PRRESYT NOT FULL

Figure 4. The value “100” moves into its correct place in the leaf.

50 90 160 200

70 =[] 100 110

IHSERTION INTO A FULL HOLE. PARENT MOT FuLL

Figure 5. The middle value of the leaf, “90”, moves up to
the parent node and the leaf is split.

=1+] 90 160 200

70 80 100 110

IHSERTTON LoT0 & FULL HODE,. PRRENT HOT FulL.

Figure 6. The split nodes, along with their values and links, are repositioned.

BTree Deletion

The BTree deletion animation illustrates six possible ways for a value to be deleted from a BTree:
from a non-leaf, a leaf that is larger than minimum size, a leaf whose neighbor is larger than min-
imum size, whose parent is larger than minimum size, whose ancestor is larger than minimum
size, or a deletion from a BTree which does not fit any of these cases, in which case the root is dis-
solved. Similar to the BTree insertion, this animation contains a dialogue of questions. Depend-
ing on the user’s response to the questions asked, the appropriate deletion simulation is shown.
The deletion of a value from the tree is illustrated as the value moves down and into a “garbage
can” image.,

The case in which the value “100” is deleted from a leaf whose parent is larger than the minimum
size is illustrated below.

Delets 100

50 160 200

Vil e

20 40 70 100 180 200

DELETION FROM LEAF, LEAF MINIMUM.
BOTH HEIGHBORS MINIMUM, PARENT NOT MINIMUM

Figure 7. The original form of the BTree is displayed.

Delete 100

50 150 200

20 40 70 180 200

DELETION FROM LEAF. LEAF MINIMUM,
EGTH HEIGHBORS MINIMLA4, PARENT MOT MIHIMUM

Figure 8. The value “100” is moved into the deletion “garbage can.”

Merge with a neighbor, .

150 200

20 40 g0 70 180 200

DELETIOH FROM LEAF, LEAF MINIMUM,
EOTH HEIGHBORS MINIMUM, PARENT HOT MIMIMUM

Figure 9. The value “50” is moved down so that the leaf may regain its order.

Merge with a neighbor,

20 40 50 70 180 200

DELETION FROM LEAF, LEAF MLHIMUM,
BATH NEIGHBORS MIMIMUM, PRRENT NOT MIHIMLM

Figure 10. The leaf and its neighbor merge.

20 40 50 70 180 200

DELETION FROM LEAF, LEAF SLilMub,.
ECOTH NEIGHBORS MIHIMUM. PRRENT NOT MIHIMUM

Figure 11. The two nodes, their links, and values as repositioned as one.

Data Structures with Ada Packages,
[aboratories, and Animations

Herbert L. Dershem
Wendy L. Barth
Cheri J. Bowsher
Darrick P. Brown

1.0 Introduction

The data structures course is one of the oldest and most stable courses in the computer sci-
ence curriculum. It has been present in all model curricula and curriculum recommenda-
tions from 1967 on, and its content has remained remarkably stable.

Over the history of the data structures course, many tools and approaches have been intro-
duced and effectively employed. This paper describes a course that was designed using a
combination of three such tools: the Ada programming language, algorithm visualization
and animation, and laboratories with experimental algorithm analysis. The tools devel-
oped and used are described in detail.

2.0 The Ada Programming Language

The use of Ada in the data structures course was pioneered by Feldman [3] and more
recently advocated by Silver [6]. Several very good data structures textbooks are based on
the Ada language including Feldman [2], Weiss [9], Hillam [4], and Stubbs and Webre [8].

The advantages of Ada in a data structures course include the following:

« Packages and private types allow the complete implementation of abstract data types
including encapsulation and the separation of specification from implementation.

« Generics enable students to work at a higher level of abstraction when constructing
abstract data types.

« Exception handling can be included within abstract data types to further enhance
encapsulation.

In the course described here, students were provided with a library of Ada packages which
they used in their programming projects and laboratory exercises. This enabled the stu-
dents to use the data structures in their own programs without needing to implement them
in detail. The code from the packages was available for students to examine and was used
in the class to aid in the understanding of data structure and algorithm implementation.

Packages that are provided in the library are:

Data Structures with Ada Packages, Laboratories, and Animations page 1

e AVL Trees

« Rational numbers

« Unlimited precision integers
» Binary search trees

» Binary heaps

o Leftist heaps

» Linked lists

* Queues

« Stacks

e B-trees

e Splay trees

Some of these packages were adapted from those found in Weiss [9].

3.0 Algorithm Visualizations and Animations

Algorithm visualization and animation has been used successfully in data structures
courses for some time. Examples are found in Brown [1] and Naps [5]. Tools have been
described which facilitate the development of these animations. The tool chosen for use in
the present project is XTango [7].

In the present data structures course, visualizations and animations are used for both class-
room demonstration and use in the laboratory. The animations are intended to enhance stu-
dent understanding of algorithms, particularly since they the students do not write code to
implement the algorithms in most cases. Most animations illustrate the algorithm through
an animation that is viewed simultaneously with the Ada code which implements the algo-
rithm. Ada statements in the code display are highlighted as their action is animated.

Many animations are provided with the distribution of XTango. Some of these were found
to be appropriate for use in the data structures course, often with minor modifications. In
addition, other animations were developed as a part of the course development project.
Those developed were:

« Linked lists with insertion, deletion, and search
« Infix to postfix expression conversion

« Binary search tree insertion and deletion

e AVL tree rotation

e AVL tree insertion

e Splay tree rotation

e B-tree insertion

Data Structures with Ada Packages, Laboratories, and Animations page 2

A more detailed description of these animations along with illustrations are found in
Appendix A.

4.0 The Laboratories

There are eight laboratory exercises written for this course. Some of these require the stu-
dents to use a package called THREADS (Test Harness for the Repeated Execution of Ada
on Data Structures). THREADS is described in Appendix B.

Descriptions of the laboratory exercises are found in Appendix C. The titles and brief
descriptions are given below.

1. Writing an Ada program
The students are introduced to the Ada language by writing a program to compute the
nth power of 2 using integers and floats. They are also required to write a program
which uses Newton’s method to calculate the square root of 2. Students observe the
limitations of size and accuracy with Ada’s built-in numeric types.

2. Using Ada Packages
Students use a package called Big_Integer to obtain results for larger powers of 2. They
also use a rational number package to obtain more accurate results for the square root
of 2.

3. Using Generic Packages
Students use a generic rational package and instantiate it for Big_Integer to increase the
accuracy of the square root of 2 calculation.

4. Big Oh Sampling
Five algorithms are provided in Ada programs with various Big Oh values. Students
run these through THREADS to observe their timing behavior both in tabular and
graphical form.

5. Big Oh Determination
Students work with 10 algorithms whose big Oh behaviors they must analyze and
observe.

6. Stacks and Queues
Students run animations in XTango to observe and analyze the behavior of a stack
(Infix to Postfix conversion) and a queue (Post Office Queue Simulation).

7. Comparison of AVL and Binary Search Trees
Students use packages for AVL trees and Binary Search trees to observe and compare
their behaviors in terms of search/insertion times and average depth of an element in
the tree. THREADS is used to perform the analysis on the observations.

8. Sort Comparisons
THREADS is used to compare the behavior of five different sort algorithms over vari-
ous data distributions.

Data Structures with Ada Packages, Laboratories, and Animations page 3

5.0 Project Activities

The project was conducted on the following time table:

1.

June-July 1993

Course and laboratories designed, Ada packages written, data structure visualizations
constructed to support laboratories. Professor Dershem was assisted by Wendy Barth
and Cheri Bowsher with support from a National Science Foundation Research Experi-
ences for Undergraduates program grant. Also, student Bob Chen assisted.

. November 1993

Results of work of previous summer were presented by Wendy Barth and Cheri Bow-
sher at the Argonne National Laboratories Symposium on Undergraduate Research.

. March 1994

Seminar on algorithm animation was presented at the United States Air Force Academy
discussing animations developed during the previous summer.

June-July 1994

Course materials finalized. Documentation prepared for software products. Professor
Dershem was assisted by Cheri Bowsher and Darrick Brown with support from a
National Science Foundation Research Experiences for Undergraduates program grant.

. Fall Semester 1994

Professor Dershem was provided 1/3 release time by Hope College for the preparation
of the course materials in the teaching of the course.

November 1993 :
Results of work of previous summer were presented by Darrick Brown and Cheri Bow-
sher at the Argonne National Laboratories Symposium on Undergraduate Research.

. Spring Semester 1995

Professor Dershem used the final materials in CSCI 286, Data Structures, at Hope Col-
lege.

. August 1995

Final report was prepared.

Data Structures with Ada Packages, Laboratories, and Animations page 4

BIBLIOGRAPHY

[1] Brown, M.H., Algorithm Animation, Cambridge, MA, MIT Pfess, 1987

[2] Feldman, M.B., Data Abstraction with Ada, Reston, VA, Reston Publishing Company,
1985/

[3] Feldman, M.B., Teaching data structures with Ada: an eight year perspective, SIGCSE
Bulletin, 22(2):21-29, June, 1990.

[4] Hillam, B., Introduction to Abstract Data Types Using Ada, Englewood Cliffs, NJ,
Prentice-Hall, 1994

[5] Naps, T.L. Algorithm visualization in computer science laboratories, SIGCSE Bulletin,
22(1):105-110, February, 1990.

(6] Silver, J.L., Using Ada to specify and evaluate projects in a data structures course,
SIGCSE Bulletin, 23(1):337-340, March, 1991.

[7] Stasko, John T. TANGO: A framework and system for algorithm animation, Computer,
23(5): 27-38, 1990.

[8] Stubbs, D.F.and N.W. Webre, Data Structures with Abstract Data Types and Ada, Bos-
ton, PWS Kent, 1993.

[9] Weiss, Mark A. Data Structures and Algorithm Analysis in Ada, New York, Benj amin
Cummings Publishing Co. Inc., 1993.

Data Structures with Ada Packages, Laboratories, and Animations page 5

Appendix B
AdaVision - Visualization & Animation

AdaVision combines Ada code with dynamic images to serve as a teaching tool for data structure
courses taught in Ada. Using the algorithm animation package XTANGO, animations are created
so students may view the connection between Ada code and the action of algorithms on data and
data structures. With the exception of the AVL insertion, the Ada code associated with each
algorithm appears in the display area of XTANGO. In some cases, procedures which are not
explicitly displayed are used in order to simplify the code.

The structures and data involved in an algorithm are represented by images. These images move
as the result of interesting events, such as the insertion of a node into a tree or the movement of a
link in a rotation. At the beginning of each animation, the first line of Ada code is highlighted by
a rectangular image. Succeeding lines of code are hi ghlighted as they are executed. The user
observes the image movement taking place in conjunction with the code highlighting.

Linked List

The list animation demonstrates how inserts, deletes, and finds are done on a linked list with a
dummy header node. Insert may be done at any point within the list, delete will remove all occur-
rences of a particular value from the list, and find will search for the first occurrence of a value in
the list.

XTANGO’s animation window appears, and after the ‘run animation” button is clicked, all inter-
action with the user will occur in the shell window. A menu is displayed there, giving the user the
options of inserting a node, deleting a node, finding a node, or quitting the application.

If the user chooses to insert a node, s/he will be prompted for the value to be inserted, and then
prompted for the desired place to insert the node: either at the start of the list, the end of the list, or
after another user-specified node. If the user desires to delete a node, s/he will be prompted for the
value to be deleted, and informed that all nodes containing the value will be deleted. If the user
chooses to find a value in the list, s/he will be prompted for the value to find, and informed that

only the first occurrence of the value will be found. After all information for a particular operation
has been gathered from the user, the animation begins.

In an insert, an external pointer finds the node to be inserted after, and a new node is drawn and
added to the list. In a delete, an external pointer finds both the node to be deleted and the node
immediately before it prior to deleting the node. In a find, a comparison is animated between each
element of the list and the find value. The find value appears in the lower left corner of the display
area, and as each element is visited, the find value moves next to the value of the node. If the val-
ues match, the images flash. If they do not match, the find value returns to its place in the corner.

Nodes are represented by divided rectangles. The left half of the rectangle contains the value of
the node, while the right half holds a pointer to the next node. Any external pointers, such as those

Appendix B AdaVision - Visualization & Animation page 6

used to find a certain node in the list, appear and move along the bottom of the list image. The
code corresponding to each operation appears at the top of the animation window, and after an
operation is completed, it is erased. The original list consists of a pointer named HEAD that
points to a dummy header, that is, an empty node whose pointer field points to NULL. As lists
become long, they will move off the display area to the right. The images can still be viewed by
using the arrow buttons on the left side of the XTANGO window.

Prev_Cell := Find{input_value, L):

Temp := new Node” (X, Prev_Cell, Next):

HEAD Prev_Cell,Next := Temp:|

—— 9 \ NULL
T : //

Prev_Cell T

Temp

Figure 1. Inserting a node at the start of a linked list
Infix to Postfix Conversion

AdaVision's ‘postfix' animates an infix to postfix conversion. After clicking XTANGO's ‘Run
Animation' button, the user is asked to enter an infix expression. This original stream of characters
appears below the label ‘INPUT" in the XTANGO window. The postfix expression is built and
placed under the label "'OUTPUT’ and the operators are stored in a ’STACK’ image as they are
processed. Throughout the animation, an arrow is used to point to the character of the input stream
which is currently under consideration. The corresponding lines of Ada code are also displayed and
highlighted as the conversion is performed. Execution is completed when all symbols in the infix
expression have been processed and the stack is empty.

It is assumed in this animation that the user has a previous understanding of stack operations, such
as pop and push. Once a character, or symbol, is read, it is pushed onto either STACK or OUTPUT.
An operand in the infix expression moves directly from the input to the output stream. If an
operator is encountered, it is moved to the output after all operators with a lesser precedence are
popped from the stack and pushed onto the output. A comparison between the operator being
considered in the input and the operator at the top of the stack is indicated by a blinking top-of-
stack element.

Appendix B AdaVision - Visualization & Animation page 7

In comparing operators, left parentheses have the highest priority, while right parentheses have
none. This means right parentheses will never be pushed onto the stack. If a right parentheses is
encountered, operators will be popped from the stack and put in the output until a left one is
reached. The left parentheses is then removed from the stack, and so no parenthesis ever appear in
the output.

CONVERSION FROM INFIX TO POSTFIX

while not end_of_input_loop NPT
£ m] { (3" 8) +6/ 2)
if nperand{next_sgmbol) then
put (next_symbol?): STACK
elsif next_sumbol = 737 then

while top{stack)/="(" loop
put (popi{stack’:
end loop:
pop{stack?:
else
while not Emptuf{stack? ancd then
Priuritu(naxt_symbal)<=PriarLtg(tnp{stack}) loop
if (toplstack}) 7= “ (72} then
put (pop (stack)):
end loop:
push{next_symbol’:
end if:
end loop:
while not Empty{stack) loop ouTPUT
put{popistack)):
end loop:

Figure 2. The infix stream is placed in INPUT.

CONVERSION FROM INFIX TO POSTFIX

while not end_of_input_loop SRR
get (next_symbol): & +61 2)
if nperand(nexc_sgmbal) then
put (next_symbol)l: STACK

e % T

while top{stack)/=" (" loop
put{popistack):
end loop:?
pop{stack}:
else
while not Empty(stack? and then
Prioritg(noxb_ssmbol)<=Prier1tg(tap<stack>) loop
if (top(stack) /= "{("> then
put {popi{stack)’: 3
end loop:
push(naxt“sumbal):

end if: ¢
end loop:z
while not Empty{stack) loop OouTPUT
put{popi{stack)’: 38

end loop:

Figure 3. The symbols are processed, moved onto STACK and into OUTPUT.

Appendix B AdaVision - Visualization & Animation page 8

GONVERBKNQFRONHNFDFK)PGBTFH
INPUT
while not end_of_input_loop
get (next_sumbol?:
iF operand{naxtﬁsumbul} then
put (next_sumbol?: STACK
el=sif next_sumbol = ~3»° then
while topf{stack?s=" (" loop
put {pop{(stack??:
end loop:
pop{stack?:
else
while mot Emptuf{stack? and then
FrLorLtg(naxtﬁsgmbol)<=Prior1tg(tap<stack>) loop
if (rtopi{stack? 7= €7 > then
put {popi{stack?:
end loop:z
push(next_sumboll:

end 4iFf:
end loop:
while not Emptudl(stack’? loop ouTPUT
put {PpopP {s=tack?’?: S 8" 62/ =+

Figure 4: The final postfix expression appears in OUTPUT.

Binary Search Tree

AdaVision’s “bintree” animation demonstrates insertions and deletions on a binary search tree.
The tree is displayed on the right side of the display area, and the Ada code is shown on the left
side.

Upon beginning the animation, the user is asked whether or not s/he wants to see comparisons. If
the user answers affirmatively, all comparisons will be animated during the viewing of the anima-
tion. The are animated immediately before a value moves down the tree as follows: if the inser-
tion value is less than the existing node, it moves to the left of the node and a less-than sign
appears between the values. If the new value is greater than the existing node, it moves to the
right. If the user does not wish to see the comparisons, s/he should answer no. After making this
decision, a menu appears in the shell window. The user inputs which operation s’he would like to
see, along with the value to be inserted into or deleted from the tree.

The Ada code for both insertions and deletions is recursive. Each level of recursion is shown by
outlining the tree currently under consideration. Old outlines ‘dim’ by changing color when a new
level of recursion is entered. All code is erased and rewritten to show each recursive call.

When an insertion is animated, the new value appears in the upper-left corner and then moves to
the root position. The new value slides down to the appropriate child position: left if less, right if
greater than the node. This continues until the new value finds an empty position or encounters a
node of the same value. If the new value finds an empty position, a new link is drawn to connect it
to the tree. No value may appear more than once in the tree, so if the user does try to insert a value
that already exists in the tree, the node will flash, and the new copy of the value will be moved out
of the tree.

A deletion is animated in similar fashion, except that we are searching to match the deletion
value. Once the value has been found, the correct replacement flashes, the node being deleted is
ifted’ out of the tree, and the replacement node or suB-Tree is ‘pulled’ into place by the link that

Appendix B AdaVision - Visualization & Animation page 9

previously pointed to the deleted node. If no node is found that matches the deletion value, the
deletion value will be ‘lifted’ out of the tree.

Insert{X., T?

Ef T = null then|
T := new Tree_Node” (X, null, nulld
elsif ¥ < T.Element then //
Insert(X. T.Left):
elsif ¥ > T.Element then //

Insert{(X, T.Right):
end if:

/
/

Figure 5. Inserting a node into a suB-Tree

AVL Tree Rotation

AdaVision’s ‘avlrotat* demonstrates single and double rotations of an AVL tree upon the insertion
of an element. The user may view any of four rotations as many times as desired by choosing an
option number in a shell window after clicking XTANGO’s ‘Run Animation’ button.

In the single left rotation, there exist nodes A and B, where A is the original root of the tree and B,
A’s left child, is the root which results from the rotation. The tree is filled in by three triangles
which represent suB-Trees of depth ‘n’. The double left rotation consists of three node images: A,
the original root; B, A’s left child; and C, which is B’s right child and the new root. In this case,
the tree is filled by two triangular suB-Trees of depth n, and two triangular suB-Trees of depth
‘n+1". The nodes in each rotation are connected to suB-Trees by way of ‘links,” which serve as
pointers to nodes in the tree. The single right and double right rotations are mirror images of the
left rotations.

The element is represented by a small, orange triangle which first appears in the top right-hand
corner of the XTANGO window. After working its way down the tree in standard binary search
tree fashion, the element attaches, or inserts, itself to the bottom of a suB-Tree, potentially caus-
ing the tree to become unbalanced. The element is inserted into the left-most suB-Tree of the
pivot for the single left rotation, the right-most suB-Tree for the single right rotation, the right
suB-Tree of the left child of the pivot for the double left rotation, and the left suB-Tree of the right
child of the pivot for the double right rotation.

Each rotation also has its own display of Ada code. As each line of code is highlighted, the appro-
priate link movement is performed. Once all links are in position, the rotation occurs. The image
at each node moves to its new position in the balanced tree and the links are redrawn accordingly.

Appendix B AdaVision - Visualization & Animation page 10

Double_Right Rotation

B.Left := C.Right>
Righ

a
C.Left = Az

Figure 6 . The repositioning of links due to the insertion of an element into a suB-Tree.

Double_Right Rotation

B.Left := C.Right:
C.Right := B: c
A.Right = C.Left: /«/\

=

;]

Figure 7. A balanced AVL tree following the performance of a double right rotation.
AVL Tree Insertion

AdaVision’s “avlins” animation demonstrates insertions into an AVL tree. This animation
assumes that the user already has a working knowledge of the four types of AVL rotations: single
left, single right, double left, and double right. No code is displayed in the animation window, but
the user is notified which rotation is being performed.

After pressing the ‘run animation’ button on the XTANGO window, the user is prompted for the
value to be inserted into the tree. Values may be between 1 and 1000, with O serving as the quit
option. The user inputs the value s/he would like to see inserted, and the animation proceeds from
there.

First, the insertion into the tree is animated. The new value appears in the upper left corner of the
display window, while the root of the tree is surrounded by a blue circle. This blue lozenge marks
the position in the tree currently being compared with the new value, and will eventually mark the
spot where the value is to be placed. Next, the circled node flashes to show that it is being com-
pared to the insertion value. If the new value is less than or equal to the surrounded node, the loz-
enge moves to the position of the left child of the node. If the new value is greater than the node,
the lozenge moves to the right child’s position. After the correct move of the lozenge, a new com-
parison is done. If no node exists to compare the value with, the value is inserted into the tree as a
new node, and an edge is added to connect it to the tree.

Appendix B AdaVision - Visualization & Animation page 11

If the new node causes the tree to be unbalanced, a rotation is animated. First, we search for the
unbalanced suB-Tree. The blue lozenge is replaced by a green one, and the green lozenge moves
up the tree until it finds a node whose tree is unbalanced. If one is found, the user is notified of
which of the four rotations will occur, and the rotation is done. If one is not found, the green loz-
enge disappears.

In a rotation, when a node moves, the edge pointing to it is deleted before the movement occurs.
After the node has assumed its new position, a new edge is drawn that points to it. The only
exception to this action is when the node is moving from or to the root position in the tree.

After the value has been inserted and any necessary rotation done, the user is prompted for the
next value to insert into the tree.

-
T
Single Left Rotation /

Figure 8. Finding the pivot node

350

300 s00

Figure 9. The balanced tree following a single left rotation
Splay Tree Rotation

AdaVision’s ‘splay’ demonstrates zig-zig and zig-zag splay tree rotations. The user may view
either of the two rotations as many times as s/he would like by clicking XTAN GO’s ‘Run Anima-
tion’ button and choosing an option number from a shell window.

The zig-zag demonstration includes three nodes: X, the left child of the pivot’s right child and the
node to be accessed; G, the original root and grandparent node of X; and P, the parent node of X.
These nodes are connected by ‘links’ to four triangular suB-Trees labelled A B,C, and D, where A
is the left-most suB-Tree and D the right-most suB-Tree.

Appendix B AdaVision - Visualization & Animation page 12

In viewing the zig-zag animation, the links are repositioned one at a time and the corresponding
lines of Ada code are highlighted until the objective of making X the new root of the tree is
accomplished. Following the series of link movements, the images in the tree are reconstructed,
bringing the tree into its rotated form.

The zig-zig rotation is demonstrated similarly, except that X is initially positioned as the left child
of the pivot’s left child.

~ZIG-ZIG~ SPLAY ROTATION

Figure 10. The movement of links in order to access node X.

~ZIG-ZIG~ SPLAY ROTATION

P.Left := X.Right:
:= P.Right: P

Figure 11. The rotated splay tree with X as its new root.

B-Tree Algorithms

The following two AdaVision animations illustrate insertions and deletions on a B-Tree. Due to
the complexity of the B-Tree algorithm, these animations do not include the corresponding Ada
code as part of their displays. Also due to complexity, and because the implementation is not nec-
essary for what the animations are intended to illustrate, the actual B-Tree algorithm is not imple-
mented into one of the two separate XTANGO files as it normally would be. Instead, each
animation merely demonstrates the possible actions that would be performed on a particular B-
Tree if an insertion or deletion were to occur.

Within each of the B-Tree animations, as a value is inserted or deleted, images which represent

Appendix B AdaVision - Visualization & Animation page 13

nodes, links and values are repositioned accordingly. Nodes containing values that are not rele-
vant to the particular B-Tree demonstration are represented by empty, smaller-sized, rectangular
images, while nodes containing values which are necessary for the demonstration are represented
by non-empty, larger-sized, rectangular images. The condition of the particular B-Tree that is
shown depends on the user’s response to a series of questions regarding the B-Tree he or she
would like to view. These questions are asked in the form of a dialogue before an animation is
shown. Once the animation is displayed, a label describing the insertion or deletion being per-
formed is written near the bottom of the XTANGO window. Also, in the upper left corner of the
window is a display of text which indicates the value being inserted or deleted. The B-Tree dele-
tion animation additionally includes a short text phrase which explains what is occurring within
the B-Tree at the moment that the images are moving.

B-Tree Insertion

The B-Tree insertion animation illustrates four possible ways for a value to be inserted into a B-
Tree: into a non-full leaf, a leaf whose parent is non-full, whose ancestor is non-full, or into the
leaf of a B-Tree which does not fit any of these cases, in which case the root is split. The anima-
tion contains a dialogue which asks the user questions regarding the type of B-Tree into which he
or she would like to see an insertion performed. Depending on the user’s response to the ques-
tions, the appropriate insertion simulation is shown.

The case in which the value “100” is inserted into a leaf whose parent is non-full is illustrated
below.

Insert 100

50 150 200

THSERTION INTD A FULL NODE, PARENT NOT FULL

Figure 12. The original form of the B-Tree is displayed.

Appendix B AdaVision - Visualization & Animation page 14

100

50 150 200

70 80 90 110

INSERTION INTO A FULL NODE. PARENWT HOT FULL

Figure 13. The value “100” moves down through the top of the tree.

50 150 200
100

70 80 a0 ii0

INSERTION INTD @ FULL HODE. PARENT NOT FULL

Figure 14. The value “100” moves down through the parent node.

Appendix B AdaVision - Visualization & Animation page 15

50 150 200

/ s

70 8o 90100110

INSERTION INTO A FULL NODE, PARENT HOT FULL

Figure 15. The value “100” is inserted into its correct place in the leaf.

50 200

50 20 1
a0 100 110

70

INMSERTION INTD A FULL MNUDE. PARENT HOT FLULL

Figure 16. The middle value of the leaf, “90”, moves up to the parent node and the leaf is split.

Appendix B AdaVision - Visualization & Animation page 16

50 90 i50 200

L

70 80 100 110

IMSERTION INTO A FULL HODE, PARENT HOT FULL

Figure 17. The split nodes, along with their values and links, are repositioned.
B-Tree Deletion

The B-Tree deletion animation illustrates six possible ways for a value to be deleted from a B-
Tree: from a non-leaf, a leaf that is larger than minimum size, a leaf whose neighbor is larger than
minimum size, whose parent is larger than minimum size, whose ancestor is larger than minimum
size, or a deletion from a B-Tree which does not fit any of these cases, in which case the root is
dissolved. Similar to the B-Tree insertion, this animation contains a dialogue of questions.
Depending on the user’s response to the questions asked, the appropriate deletion simulation is
shown. The deletion of a value from the tree is illustrated as the value moves down and into a
“garbage can” image. The movement of remaining values, nodes and links then proceeds as their
images are repositioned accordingly.

The case in which the value “100” is deleted from a leaf whose parent is larger than the minimum
size is illustrated below.

Appendix B AdaVision - Visualization & Animation page 17

Delete 100 .

50 150 200

20 40 70 100 180 200

DELETION FROM LEAF, LEAF MINIMUM,
BOTH NEIGHBORS MINIMUM, PARENT HOT MINIMUM

Figure 18. The original form of the B-Tree is displayed.

Delete 100
50 150 200
20 40 . 70 180 200
0
DELETION FROM LEAF, LEAF MINIMUM.
BOTH HEIGHBORS MINIMUM, PARENT NOT MINIMUM

Figure 19. The value “100” is deleted by being thrown into the “garbage can.

Appendix B AdaVision - Visualization & Animation

page 18

b}

Merge with a neighbor, .

150 200

20 40 50 70 180 200

DELETION FROM LEAF. LEAF MINIMUE,
BOTH HEIGHBORS MINIMUM, PARENT NOT MINIMUM

Figure 20. The value “50” is moved down so that the leaf may regain its order.

Merge with a neighbor. .

20 40 - 50 70 i80 200

DELETION FROM LEAF. LEAF MINIMUM.
BOTH NEIGHBORS MINIMUM. PARENT NOT MINIMUM

Figure 21. The leaf and its neighbor merge

Appendix B AdaVision - Visualization & Animation

page 19

20 40 50 70 180 200

DELETION FROM LEAF. LEAF MINIMUM,
BOTH NEIGHBORS MINIMUM. PARENT NOT MINIMUM

Figure 22. The merging nodes, their links, and values are repositioned as one.

Appendix B AdaVision - Visualization & Animation page 20

Appendix B
THREADS

Many experiments that are performed in the laboratories involve running tests on algorithms that
have been implemented using Ada packages. These tests produced results that can be measured
and analyzed. Working in the lab gives students the chance to be more directly involved in their
learning, increasing the amount of information they retain.

Some of the Ada packages will be written by the students themselves, but more are provided by
the instructor. In this way, the students are exposed to more data structures and algorithms. Stu-
dents will spend their time seeing and experiencing the effects of algorithms instead of actually
coding the algorithms and corresponding data structures. This should increase their ability to ana-
lyze the effectiveness and/or efficiency of different approaches to a problem.

Currently, experiments are planned for the following applications:

1) Big Oh Experiments

2) Comparison of different sorting algorithms

3) Binary search tree vs. AVL tree

4) Hash collision handling

5) Big Oh coefficient evaluation
In order to run these types of experiments in a laboratory setting, an appropriate tool is needed.
The major part of our project consists of the development of such a tool, named THREADS.

THREADS (Test Harness for Repetitive Experiments on Ada Data Structures) is a tool that can be
used to run tests on data structures and algorithms, reporting back to the user some type of the
measurement of the test. The tests are ‘black box’ programs that are implemented separately, and
may be tested and run separately as well.

How the Student Uses THREADS

The basic idea behind THREADS is illustrated by the following chart

Data Set » Black Box

THREADS |

Appendix B THREADS page 21

THREADS generates a data set based on information given by the user. This data set is used by a
black box to run one experiment. Upon the black box’s completion, it returns to THREADS the
sample size of the data set and an integer measurement of the test. The measurement will be
included in a table that keeps track of each experiment the user runs.

Running THREADS brings up the interface shown in Figure 23. All information needed for the

data set is input in the appropriate places by the user. The parameters the user may designate are
as follows:

Method: The black box to use for the experiment
Write to File: The named file where the data set is stored. If no file is designated, a
temporary default file will be used.
Write Path: The path to the directory where all data and files will be written.
Use File: The path and name of a data set to be used in place of a file generated by
THREADS.
Sample Size: The number of elements in the data set.
Sample Distribution: The statistical probability distribution used to generated the random
data set.
Sample Order: The extent of ordering imposed on elements in the data set.
The default settings are for a 100 element, completely unsorted data set generated randomly from
a uniform random distribution.

Method

The black box process is spawned by the THREADS process. When THREADS executes a black
box, it gives the black box a data set generated by THREADS. It then waits for the black box to
return. When the black box returns, THREADS takes the data and writes it to the Table of Mea-
surements. The black box returns 2 integers. The first is the size of the data set and the second is
the measurement that the black box returns.

The meaning of the measurement returned by the black box will vary depending on which black
box is being run. In some cases the measurement may be the number of comparisons that were
performed in a sort routine. In the case of the binary search tree experiments, the measurement
represents the average depth of a node in the tree. In all cases, however, the measurement will be
a non-negative integer useful in analyzing the effectiveness or efficiency of a certain data struc-
ture or algorithm for a particular data set. The measurements returned from different experiments
can then be compared against each other to aid the user’s analysis.

Write to File _
The text field labeled “Write to File:” takes a name as input. If a name is specified, the generate
data set will be saved to a file with that name in the directory specified in the “Write Path:” text
field. If no name is specified, the data set will be saved to a temporary file.

Write Path

The “Write Path:” text field takes a path string as input. THREADS will not operate until a valid
path is given. The path string needs to be a path where the user has read and write permissions.

THREADS reads and writes many data files. If it cannot read and write its data, it will not work
properly. If the user attempts to run a black box without suppling the write path, a notice prompt

Appendix B THREADS page 22

Figure 23

Use File
The “Use File:” text field takes a string as input. This text string must contain the entire
path and name of the data file to be used. If a valid path and name is given, THREADS

Appendix B THREADS page 23

will use this data set for the black box instead of generating a new data set. THREADS will use a
specified data set before generating a new data set. Therefore, if the user wishes to generate a new
data set, the string in the “Use File” text field must be deleted.

Sample Size

The sample size field allows the user to enter the number of elements to be included in the data
set, ranging from 1 to 10000. The sample size may be changed by using the mouse to click on the
up-down arrows, or by manually entering the size into the text field. The default is 100 elements.

Sample Distribution
Sample distribution indicates the type of randomness in which the data elements are to be distrib-
uted. There are six different distributions to choose from.

1) Uniform.

2) Exponential.

3) Normal

4) Gamma

5) Poisson

6) Binomial
To the right of the Sample Distribution, there is a button labeled ‘Distribution Parameters’. If this
button is clicked a window panel with number fields will appear (Figure 24).

(Figure 24)
With this distribution window panel, the user can modify the distributions by changing the param-
eters for each distribution.

These distributions can be used to evaluate how the distribution of data can affect different data
structures. For most cases, Uniform distribution is sufficient. Future work on distributions
includes the development of black boxes that fully utilize the Sample Distribution feature of
THREADS.

Sample Order

Appendix B THREADS page 24

The sample order refers to the degree of order the user would like in the data set to be generated,
ranging from -100 to 100. A sample order of 100 means that 100% of the data will be in increas-
ing sorted order. A sample order of - 100 means that 100% of the data is in decreasing sorted order.
A sample order of zero means that the data is in perfectly random order. Any value between -100
and 100 is acceptable. A value of 50 means that the first 50% of the data is in increasing sorted
order, the remainder is in random order.

Data Set

The data set is generated based on the information from the sample size, distribution, and order
fields. The elements are randomly generated to fulfill the user’s requirements. A data set can also
come from a imported data set using the “Use File:” text field by supplying a path and name.

Table of Measurements

Since data sets may be saved in files designated by the user, experiments may be repeated. The
table of measurements from an experiment session may also be saved, so the user may come back
to the data at a later time to continue analysis or even add to the previous experiment record.
Tables are saved by clicking the right mouse button while on the table. From the ‘File’ menu,
choose the option ‘Save as...” and a save window will appear. To load in a previously saved table,
choose the option ‘Open’ from the ‘File’ menu.

Run Experiment

When the ‘Run Experiment’ button is clicked, the data set is generated and written to the appro-
priate file. Next, the black box process is spawned and executed. When the black box finishes, the
sample size and measurement are written to the table of measurements. If the user has not pro-
vided THREADS with the appropriate information, the user will be notified to do so and no
experiment will be run. If the black box aborts or crashes, the user will be notified that there was
an error in the black box and no data will be written to the table.

View Graph

When the ‘View Graph’ button is clicked, the measurements currently in the table will be used as
the coordinates for a graph. Graphs are generated using ‘xvgr’ and may be created at any point in
the experiment session. Each graph is produced in its own window with a unique title, which
allows for easy comparison between graphs.

Clear Table

The ‘Clear Table’ button allows the user to clear the table at any point during a THREADS ses-
sion. This enables the user to start a new set of experiments at any time. When the ‘Clear Table’
button is clicked a prompt will appear asking if they really want to clear the table. If “Clear Table”
is selected, the table will be cleared. If cancel is selected, the user will be returned to THREADS
with no changes.

Coefficients
If the ‘Coefficients’ button is clicked, a small window with five buttons will appear (Figure 25).

The five buttons are log(n), n, nlog(n), nZ, and n to some power, ‘n’ being the sample size. If one
of these buttons is clicked, an xterm will appear displaying the coefficients of that particular Big

Appendix B THREADS page 25

Oh of the data in the table. For example, if the data in the table is:

100 600
If the n? button is clicked, the xterm will appear displaying:
100 600 6.000000000E-02

This means that with n=100 and y=600, an expression of the form y=cn2 would require c to be
6.0000000E-02. If this coefficient remains relatively constant over many values of n, the function
represented is a good candidate for the big-oh function of the black box process.

Figure 25

Help

Help may be found both by clicking the ‘Help’ button on the THREADS window, or by pressing
the help key on the keyboard. The button on the THREADS window will open a pop-up window
that contains complete help text. Pushing the ‘help’ key on the keyboard will give a short sum-
mary of help for the spot on the window where the cursor is pointing.

Quit

If the ‘Quit’ button is clicked, a notice prompt will appear and ask if the user really wants to quit.
If cancel is selected, the user will be returned to the main THREADS program without any
changes. If ‘Quit’ is selected, THREADS will exit and close all windows. Also when THREADS
is quit, all temporary files will be deleted so no unwanted files remain in the specified write path
directory.

THREADS Tutorial
There is a small tutorial program that is included with THREADS. When this program is run a

Appendix B THREADS page 26

window opens that displays the complete tutorial text in a scrollable area. This window is sized so
that it can be placed next to the THREADS window on the same screen for easy reference when
working with THREADS.

For the Instructor

THREADS is composed of 11 files and a Makefile. The files and their contents are as follows:

threads.G: Created by the graphical interface code generator, DevGuide 3.0.1.
threads_ui.h: Definitions of labels used to receive information about the UIT objects.
threads_ui.cc Sets up the interface, and begins waiting for events to process.

threads_stubs.cc: Callback functions for the various widgets on the interface. Also
contains any auxiliary functions needed by THREADS.

threads.info: Contains the help text retrieved by pressing the “Help” key on the
keyboard.

longhelp.info: Contains the complete help text displayed in the THREADS help
window.

threads.icon: Contains the graphical data for the THREADS icon.

threads.mask Contains the graphical data for the THREADS icon mask.

xvgr.prefs: Contains the preferences for xvgr.

coef.scpt: Contains the script that is called when one the coefficient buttons are
clicked.

arret.cc: A very small program that just waits until the user presses the Return

key; used in coef.scpt.

Black boxes may be added to THREADS with little effort. The spots where the code needs to be
modified are marked by comments of the form:
/¥ NEW METHODS: add any new methods here */

First, in the file threads_ui.cc, insert the line:

(void) mthdchoice.addChoice (“Method name”);
where ‘Method name’ is the name to appear on the menu in the interface. For each new method
added, a similar line must be inserted. The lines need to be added to the current listing of choices,
which is marked in the code.

Next, in the file threads_stubs.cc, add another “else if” condition of the form:
else if (strcmp(method, “MethodFile”) == 0) {
strcat(command, “MethodName”);
}
In this section ‘MethodFile’ is the executable file name for the black box. Each new method needs
to have its own case in the “if-else if”” statement.

New methods can also be used by placing them in the blackbox directory and typing the name of
the method executable in the “Method:” text field. This is much easier from a programming aspect,
but this requires the user to type in the name instead of being able to select it from the menu.

New types of distributions may be added in a similar fashion. The menu choices for “Sample Distri-

Appendix B THREADS page 27

bution” are added the same way as those for “Method.” A clear definition of what the distribution

means and how it will affect random generation of integers will facilitate the changes in the
code of threads_stubs.cc.

In threads_stubs.cc, the system calls use the full path names to execute the black box and to use
the other include files. Check that these paths are correct, and change them as appropriate.

Appendix B THREADS page 28

Appendix C
Data Structures L.ab Manual

Appendix C Data Structures Lab Manual page 29

Data Structures

Laboratory 1 - Writing an Ada program

|. Write an Ada program to accept as input an integer n and to calculate and print the nth
power of two (2"). Store your program in the file LAB1_1.ADA.

Run your program for some values of n and verify that it is correct. List the values and
results below:

Find the largest integer value of n for which this program gives a correct value. What is
this value of n?

What happens when you enter a value larger than the above value?

How many bits do you need to represent the largest value of 2" that Ada can represent?
Hint: it takes k bits to represent 2K 1, and k+1 bits to represent g%

Do you think Ada can represent integers that are larger than the largest possible power of
27 If you are not sure, write a little test program to see. If so, what do you think would be
the largest representable integer?

Since your computer also has to represent negative integers, and assuming it represents
approximately as many negatives as positives, how many bits does your machine use to
represent integer?

2. Modify the program you wrote for #1 to express the answer as float instead of integer

Appendix C Data Structures Lab Manual page 30

type. Store your modified program in the file LAB1_2 . ADR.

Run your program for some values of n and verify that it is correct. List the values and
results below:

Find the largest integer value of n for which this program gives a correct value. What is
this value of n?

What happens when you enter a value larger than the above value?

The computer represent a floating point number in two parts, the mantissa and the expo-
nent. From your results above, how many digits do you think your computer uses to repre-
sent the exponent? Remember that negative exponents are possible as well.

3, Write a program to use Newton’s method to calculate J2. Newton’s method starts with
2

an initial guess, Xo, and then generates successive guesses using x, , = (x e —) ;
X

n

Consider that the process has converged whenever two consecutive guesses are the same
or when x% = 2. For each guess calculate its error as x% =2,

How accurate is the answer which you obtain? To how many places is it accurate?

How does your answer here relate to your answer to #27

Appendix C Data Structures Lab Manual page 31

Data Structures

Laboratory 2 - Using Ada Packages

In this laboratory, you will solve the same two problems you solved in Laboratory 1, but you will
make use of Ada packages to enhance your solutions. The two Ada packages that you will use are
described below:

Package big_integer is a package which permits you to do arithmetic on integers with infi-
nite precision. You are therefore not limited to the size of integers implemented on the machine
that you are using. A full set of arithmetic operators are implemented in this package for data type
big_int. The specification of the package is

-- big_integer.ads

—- Note: Tt is recommended that this package be used with an Ada
-- implementation that uses automatic garbage collection.

package big_integer is
type big_int is private;

big int};
out big_int);

procedure put(a :
procedure get(a

function mbi (s string) return big_int;
function mbi (i integer := 0) return big_int;

-- mbi stands for “Make Big Integer”
procedure dbi (a in out big int);

function bi2int(a : big_int) return integer;
function “+”(a, b : big_int) return big_int;
function “+”(a : big_int) return big_int;
function “-”(a, b : big_int) return big_int;
function “-”(a : big_int) return big_int;
function “*”(a, b : big_int) return big_int;
function “/“(a, b : big_int) return big_int;
function “rem”(a, b : big_int) return bdgr int;

procedure div(a, b

big_int; result,

remainder in out big_int);
function “abs”(a : big_int) return big_int;
function “<%“(a, b : big_int) return boolean;
function “<="(a, : big_int) return boolean;
function “>”(a, b : big_int) return boolean;

Appendix C Data Structures Lab Manual

function “>="(a, b : big_int) return boolean;
function equal(a, b : big _int) return boolean;
-— This is not the same as the operator “=".
-- When making arithmetic comparisons for equality, use
-— the above function.

-— Use “=" only if you know what you are doing!
function equal(a : big_int; b : integer) return boolean;
function asfloat(a : big_int) return float;
function “mod”(a, b : big_int) return big_int;
big_int_error : exception;

private
type digit_node;
type dn_ptr is access digit_node;
type digit_node is
record
d : integer range 0..9;
next ¢ dn ptd;
end record;

type big_int is

record
is_pos : boolean;
dl : cdn.ptr;

end record;
end big_integer;

Below is an example program which uses the type bigint. This program should serve as a pattern
for the programs you need to write in this and the following laboratories:

-- Program to compute the square of an integer and store and print as a bigint.

with text_io; use text_io;

package int_io is new integer_io(integer) ;
with int_io; use int_io;

with text_io; use text_io;

with big_integer; use big_integer;

procedure lab2_example is

square : big_int := mbi(1);
number : integer;

begin
get (number) ;
square := mbi (number) *mbi (number); -- mbi converts integer to bigint.
put (square) ; —— this calls put from package big_integer.

end lab2_example;

Appendix C Data Structures Lab Manual page 33

1. Rewrite the program you used in Laboratory 1 to calculate powers of 2, using type big_int
instead of integer for the calculations. Calculate 2 to the powers 1..16, 1023, 1024, and 2048.

Verify that the first 16 powers of 2 are correct from the answers obtained in Laboratory 1.

What are some ways that you can spot check the answers to 21023 3pq 210249

How many digits are there in 210249 How many in 220489 How many would you expect in 240959

Another package that is provided is one that does calculations for rational numbers. A rational
number is a number that is represented by two integers, a numerator and a denominator. For

example, the float number 0.5 would be represented by the two integers (1,2) since it is equal to % ;

The specification of the package rat_pack defining type rational is
Package Rat_Pack is
type Rational is private;

function "+" (R1l,R2:Rational) return Rational;
function "-"(R1l,R2:Rational) return Rational;
function "*"(R1,R2:Rational) return Rational;
function "/"(R1l,R2:Rational) return Rational;
function Rat (Il,I2:integer) return Rational;

-- converts two integers to a rational
function Numer (R:Rational) return integer;

-— returns the numerator of a rational number
function Denom(R:Rational) return integer;

—- returns the denominator of a rational number
function "<"(R1l,R2:Rational) return boolean;
function ">"(R1,R2:Rational) return boolean;
procedure Put(R:Rational);

-- outputs a rational number
function Value(R:Rational) return float;
- returns a float approximation to a rational number

Zero Denominator : exception;

Appendix C Data Structures Lab Manual page 34

—— raised when a rational operator results in a zero
-- denominator

private
type Rational is record
Num : integer;
Den : integer;
end record;

end Rat_Pack;

2. Using the package rat_pack, repeat the calculation of the square root of two using Newton’s
method.

What is the best approximation, measured by the number of digits in the denominator, that can be
generated using type rational?

How does this compare to the best approximation possible using float?

What is exception is raised when your program is terminated?

Why was this exception raised by your program at this time?

Appendix C Data Structures Lab Manual page 35

minate your calculation after the seventh estimate.

What is the accuracy that you obtained on the seventh estimate?

Next we introduce the following generic package:

-- ratgen.ads

-— This is a generic package to define rational numbers over
type inttype.

-- Multiple operators on inttype are passed as parameters.

the

generic
type inttype is private;
with function “+”(il,i2 inttype) return inttype;
with function “-"(il, 12 inttype) return inttype;
with function “-"(il inttype) return inttype;
with function “*”(il,i2 inttype) return inttype;
with function “/”(il,i2 inttype) return inttype;
with function “rem” (il,i2 inttype) return inttype;
with function equal(il,i2 inttype) return boolean;
with function intequal (il inttype; 12 integer) return

boolean;

with function “<“(il,i2 inttype) return boolean;

with procedure put (il inttype; width : integer := 1000;
base
integer := 10);
with function asfloat (il inttype) return float;
package rat_gen is

type rational is private;

function “+”(rl, r2 rational) return rational;
-- sum of two rationals

function “+”(rl rational) return rational;
-~ identity operator

function “+“ (rl rational; il inttype) return rational;
-- adds a rational to an inttype

funcktien M43l inttype; rl rational) return rational;
-—- adds an inttype to a rational

function M=%(xl, 2 rational) return rational;
-- difference of two rationals

function “-7(rl rational) return rational;
-- negation operator

Funetion 2="(xl rational; il inttype) return rational;
-- subtracts inttype from rational

function “-7 (il inttype; rl rational) return rational;

Appendix C Data Structures Lab Manual

page 37

—- gubtracts rational from inttype
function “*”(rl, r2 : rational) return rational;
-- product of two rationals
function “*” (rl : rational; il : inttype) return rational;
-- multiplies rational by inttype
function “*” (il : inttype; rl : rational) return rational;
-- multiplies inttype by rational
function “/”(rl, r2 : rational) return rational;
-- quotient of two rationals
function “/”(rl : rational; il : inttype) return rational;
-- divides rational by inttype
function “/” (il : inttype; rl : rational) return rational;
-- divides inttype by rational
function rat(il, i2 : inttype) return rational;
-- creates rational il/i2 out of two inttypes
function numer (r : rational) return inttype;
-- returns the numerator of the rational r
function denom(r : rational) return inttype;
-- returns the denominator of the rational r

function “<“(rl, r2 : rational) return boolean;
-- less than comparison for two rationals
function “>”(rl, r2 : rational) return boolean;

-- greater than comparison for two rationals
procedure put(r : rational);

-- output function for rational
function value(r : rational) return float;

-- converts rational to real

zero_denominator : exception;

private
type rational is
record
num : inttype;
den : inttype;
end record;
end rat_gen;

2. Using rat_gen with inttype defined as integer, rerun your program for the square root of 2 esti-
mation.

Why did this fail to obtain the accuracy that you obtained in #17

What caused the process to fail.

3. Finally, apply the type big_integer to the generic type rat_gen to obtain rationals over the

Appendix C Data Structures Lab Manual page 38

big_integer type. Run your square root of two program using this data type and observe the
results. Once again, terminate your program after the seventh estimate.

How does the seventh estimate compare with the seventh estimate you obtained in #1?

What advantage do you see to using this generic approach over the approach of using a simple
type in #17?

Appendix C Data Structures Lab Manual page 39

Data Structures

Laboratory 4 - Big Oh Sampling

Threads is a tool for running experimental programs and examining measurements reported from
those programs. This laboratory is your first experience using Threads software.

Read the Threads help file and familiarize yourself with the capabilities of this software.

Five programs are provided for you to observe the behavior of various big-oh rates using Threads.

1. Lab4_1 is a program which computes 2" using an algorithm which is O(log n). Run this pro-
gram through Threads for n=64,128,256,512 and graph the resulting data. For each value of n, run
the experiment three times to generate three data points at each value of n.

Compare the graph of your data with the graph of the logarithm function. The best way to do this
is to plot this graph using the Log-linear axes. Compare the resulting graph to a straight line. The
nearer this approximates a straight line, the nearer your times are to O(log n). Record below the
data table generated and your observations concerning the graph.

Appendix C Data Structures Lab Manual page 40

2. Lab4_2 is a program which sums the first n integers. It should run with a time of O(n). Run it
through Threads with three repetitions for n=50,100,150,200,250, and print your table and graph.

Record your data table in the space below:

Your graph should approximate a straight line if the time of this algorithm is actually O(n). Does
it appear to approximate a straight line?

3. Lab4_3 is a program which calculates 21 for i=1,..,n. It should have a running time of O(n log
n). Run this program through Threads with three repetitions for n= 50, 100, 150,200,250,300, and -
record your table of results below:

Graph the table of values generated. Change your graph of the above data to plot on Log-log axes.
If this is truly O(n log n) time, this graph should appear as a straight line. Is this the case?

Appendix C Data Structures Lab Manual page 41

4. Lab4_4 is a program which calculates a multiplication table for all pairs of integers in 1..n. It

should run with a time of O(n?'). Run it through Threads with three repetitions for n=50,
100,150,200 and copy your table values below:

Change your graph of the above data to plot on Log-log axes. If this is truly O(n?) time, this graph
should appear as a straight line with slope two. Is this the case? How do you estimate the slope?

5.Lab4_5 is a program which recursively calculates 2" via repeated additions. It does this very

poorly from a big-oh point of view and runs with a time of O(2"). Because this algorithm has a
run-time which grows very rapidly, run through Threads with three repetitions for n=10,11,12,13
and 14. Notice that the run-time approximately doubles every time n is increased by 1. Record
your table values below:

Change your graph of the above data to plot on Linear-log axes. If this is truly O(2") time, this
graph should appear as a straight line. Is this the case?

Appendix C Data Structures Lab Manual page 42

6. Answer the following questions after reflecting on the results of the five tests that you have run.

How accurately did the results you obtained agree to the results that you expected? In which cases
was the agreement the greatest and which cases the least?

What explanations might there be for the discrepancy between the expected results and the
observed results in these experiments?

How do you explain the variance, if any, in the times reported when the same experiment is
repeated several times?

Appendix C Data Structures Lab Manual page 43

Data Structures

Laboratory 5 - Big Oh Determination

This laboratory requires you to analyze 10 different test programs to determine the big-oh of the
running time. You will first be asked to determine the running time by analyzing the code for the
function and then you are to verify your hypothesis by using Threads. A useful fact for working
with logarithms in this lab is the following identity that can be used to convert logs from base a to
base b:

log,n
log n = ¢

log,a

function Testl(n:integer) return integer is

count : integer:=0;
newn : integer:=n/2;
begin

while newn>0 loop
count:=count+l;
newn:=newn/2 ;
end loop;
return count;
end Testl;

What is the running time for this function in big-oh notation? Justify your answer.

Show results from running this function through Threads. How does this verify or contradict your
previous answer? Change your hypothesis if necessary. Hint: try n=1,2,3,4,5,6,7,8 and see if any
pattern emerges that is helpful.

Appendix C Data Structures Lab Manual page 44

function Test2 (n:integer) return integer is

count : integer:=0;
newn : integer:=n;
begin
while newn>0 loop
count :=count+1l;
newn:=newn-1;
end loop;
return count;
end Test2;

What is the running time for this function in big-oh notation? Justify your answer.

Show results from running this function through Threads. How does this verify or contradict your

previous answer? Change your hypothesis if necessary

function Test3 (n:integer) return integer is

Appendix C Data Structures Lab Manual

page 45

count : integer:=0;
begin
for i in 1..m loop
count:=count+Testl (n) ;

end loop;
return count;
end Test3;

What is the running time for this function in big-oh notation? Justify your answer.

Show results from running this function through Threads. How does this verify or contradict your
previous answer? Change your hypothesis if necessary

function Test4 (n:integer) return integer is
count : integer:=0;

Appendix C Data Structures Lab Manual page 46

begin
for i in 1..8 loop
count : =count+Test2 (n) ;
end loop;
return count;
end Testd;

What is the running time for this function in big-oh notation? Justify your answer.

Show results from running this function through Threads. How does this verify or contradict your
previous answer? Change your hypothesis if necessary

function Test5 (n:integer) return integer is
count : integer:=0;
begin

Appendix C Data Structures Lab Manual page 47

for 1 dn l1..n leep
count : =count+Test4 (n) ;

end loop;
return count;

end Test5;

What is the running time for this function in big-oh notation? Justify your answer.

Show results from running this function through Threads. How does this verify or contradict your
previous answer? Change your hypothesis if necessary

function Test6 (n:integer) return integer is
count : integer:=0;

newn : integer:=n/2;

begin

Appendix C Data Structures Lab Manual page 48

while newn>0 loop
count:=count+testl (n) ;
newn:=newn/2;
end loop;
return count;
end Test6;

What is the running time for this function in big-oh notation? Justify your answer.

Show results from running this function through Threads. Caution: don’t try to run this with n
greater than 20. How does this verify or contradict your previous answer? Change your hypothe-

sis if necessary

function Test7 (n:integer) return integer is
count : integer:=0;
begin
if n>0 then
count:=count+test7 (n-1)+1;

Appendix C Data Structures Lab Manual ; page 49

else
count:=0;
end: if;
return count;
end Test7;

What is the running time for this function in big-oh notation? Justify your answer.

Show results from running this function through Threads. How does this verify or contradict your
previous answer? Change your hypothesis if necessary

function Test8 (n:integer) return integer is

count : integer:=0;
newn : integer:=n;
begin

if n>0 then
count :=count+test8(n-1)+test8(n-1);

Appendix C Data Structures Lab Manual page 50

else

count:=1;
end if;
return count;
end Test8§;

What is the running time for this function in big-oh notation? Justify your answer.

Show results from running this function through Threads. How does this verify or contradict your
previous answer? Change your hypothesis if necessary

function Test9 (n:integer) return integer is
count : integer:=0;
begin
if n>1 then
count :=count+test9 (n/2)+1;

else
count:=0;

Appendix C Data Structures Lab Manual page 51

end if;
return count;
end Test9;

What is the running time for this function in big-oh notation? Justify your answer.

Show results from running this function through Threads. How does this verify or contradict your
previous answer? Change your hypothesis if necessary

Appendix C Data Structures Lab Manual page 52

Data Structures

Laboratory 6 - Stacks and Queues

For this laboratory you will be introduced to algorithm animation. In order to do this we will use
the special software package called XTango.

1. Run XTango for the Post Office simulation. In order to do this you need to type the command

/home/csci286/xtango/anims/post

In this case, we simulate a post office with n serving stations, where n is an input to the program.
A simulation is then run and you will be asked to observe the total waiting time for the 25 custom-
ers that are served. The file that contains the arrival times that you will use is
/home/csci286/po.dat.

Record the total waiting times in the table below:

Number of Stations Total Wait Time

1

2

%

4

What is the limit in the size of queue allowed in this simulation? In other words, after the queue
reaches a certain size, customers no longer enter the system. What is that size?

Did you notice any inefficiencies in the way the queueing systems works? What could be done to
make the queues operate more efficiently, that is, with less total wait time?

Appendix C Data Structures Lab Manual page 53

3. The Ada program for converting a string from infix to postfix form is given below:

while not end of input loop
get (next_symbol) ;
if operand (next_symbol) then
put (next_symbol) ;
elsif next_symbol=')’ then
while top(stack /= ‘(' loop
put (pop (stack)) ;
end loop;
pop (stack) ;
else
while not Empty(stack) and then
Priority(next_symbol) <= Priority(top(stack)) loop
if top(stack) /= ')’ then
put (pop (stack)) ;
end 4if ;
end loop;
push (next_symbol) ;
end if;
end loop;
while not empty(stack) loop
put (pop (stack)) ;
end loop;

The priorities used for the operands in this algorithm are given in the following table:

Operand Priority
(2
S | 1
+ - 0

In this algorithm, get means get the next character from the input stream and put means put the
next character to the output stream. Push and pop refer to operations on a separate stack.

Run the XTango animation for this program by typing
/home/csci286/xtango/anims/postfix

Run this for the input stream a+b to see how the algorithm operates.

To see how parentheses are handled, run XTango for the input stream a+(b*c).
To see how priority is used, run XTango for the input streams a+b*c and a*b+c.

Make up a complex expression that contains at least 5 operators and uses both parentheses and
priority. Write your expression in the space below:

Appendix C Data Structures Lab Manual page 54

Run through the algorithm by hand and predict the resulting output stream below:

Now run the algorithm in XTango and verify your result.

Appendix C Data Structures Lab Manual page 55

Data Structures

Laboratory 7 - Comparison of AVL and BST

For this laboratory, you will be using THREADS to compare the use of AVL trees and Binary
Search trees without balancing. Two programs are provided in the Method menu of THREADS
which you will use for this lab. They are TestAVL and TestBST. They return the total depth of all
of the nodes in a binary search tree with X nodes generated at random.

1. Run TestBST to generate binary search trees for sample sizes 100,200,400,800,1600,3200. Run
the experiment three times for each sample size.
(a) Enter the values you obtained below:

(b) Make a graph of the values you obtained. Does the graph look linear?

(c) Now we will perform a more sophisticated test for linearity, using the “Coefficients” button on
THREADS. Generate the coefficients for n, nlogn, and power. What conclusions do you draw
from your results as to the growth rate of the total depth of all nodes in a random binary search
tree?

Appendix C Data Structures Lab Manual page 36

2. Now repeat the above experiment for TestAVL. First clear out your table in THREADS, then
rerun all of the experiments.
(a) Write your results below:

(b) How do these values compare with the values you obtained for TestBST? How do you explain
this comparison?

(c) Run your data through “Coefficient” again for n, nlogn, and power. How does this compare
with what you observed for TestBST?

Appendix C Data Structures Lab Manual page 57

3. Now we’re going to place the entries in the tree in an ordered fashion. That is, we are going to
insert into the tree from smallest to largest. You set the order by changing “Sample Order” in
THREADS to 100. (-100 would do the same, but place the values in descending order.) Do this
and rerun the experiments for TestAvl.

(a) Enter the results below:

(b) Use coefficients to observe the growth rate of this data. What do you observe?

4. Now repeat the same process for TestBST. This time, limit your sample sizes to 100,200,400,
and 800.
(a) Report your results below:

(b) Use Coefficients to observe the growth rate. What do you observe? How do you explain this?

(c) Why did I not have you run this experiment for sample sizes greater than 8007?

Appendix C Data Structures Lab Manual page 58

5. Now try the same experiment with the sample only partially ordered. You can do this if you set
Sample Order to 20. This means that the first 20% of the sample is in order and the remainder is
random. Now rerun the experiment in 4 using this ordering.

(a) Report your results below:

(b)Use Coefficients to estimate the growth rate. What do you see and what is your estimate?

(c) What have you learned from this entire laboratory?

Appendix C Data Structures Lab Manual page 59

Data Structures

Laboratory 8 - Sort Comparisons

For this laboratory, you will be using THREADS to compare various sorting methods. The five
sort methods that we will compare are Merge Sort, Shell Sort, Heap Sort, Quicksort, and Inser-
tions Sort.

1. Run Sort1, Merge Sort, and observe the elapsed time for sorting 1,000 to 10,000 values in steps
of 1,000.

(a) Enter the time for 10,000 below:

(b) This sort is Merge Sort which is supposed to be an n log n sort. Use the Coefficient button of
Threads to test this hypothesis. Are the values you obtain fairly stable? Do you conclude that your
observations are n log n?

(c) Now rerun the sorts for sample size 10,000, but use ordered data. What was the time that you
observed for 10,0007 Is this an improvement over the time observed in (a)?

(d) Finally, run Sort1 for 10,000 sample size with the values in reverse order (Sample Order = -
100). How does this compare to the times observed in (a) and (c)?

Appendix C Data Structures Lab Manual page 60

2. Run Sort2, Shell Sort, and observe the elapsed time for sorting 1,000 to 10,000 values in steps
of 1,000.

(a) Enter the time for 10,000 below:

(b) This sort is Shell Sort which has an undetermined big Oh. Use the Coefficient button of
Threads to make an hypothesis about its big Oh. What would be your best estimate?

(c) Now rerun the sorts for sample size 10,000, but use ordered data. What was the time that you
observed for 10,0007 Is this an improvement over the time observed in (a)?

(d) Finally, run Sort2 for 10,000 sample size with the values in reverse order (Sample Order = -
100). How does this compare to the times observed in (a) and (c)?

Appendix C Data Structures Lab Manual page 61

3. Run Sort3, Heap Sort, and observe the elapsed time for sorting 1,000 to 10,000 values in steps
of 1,000.

(a) Enter the time for 10,000 below:

(b) This sort is Heap Sort which is supposed to be an n log n sort. Use the Coefficient button of
Threads to test this hypothesis. Are the values you obtain fairly stable? Do you conclude that your
observations are n log n?

(c) Now rerun the sorts for sample size 10,000, but use ordered data. What was the time that you
observed for 10,0007 Is this an improvement over the time observed in (a)?

(d) Finally, run Sort3 for 10,000 sample size with the values in reverse order (Sample Order = -
100). How does this compare to the times observed in (a) and (c)?

Appendix C Data Structures Lab Manual page 62

4. Run Sort4 Quicksort, and observe the elapsed time for sorting 1,000 to 10,000 values in steps
of 1,000.

(a) Enter the time for 10,000 below:

(b) This sort is Quicksort which is supposed to be an n log n sort. Use the Coefficient button of
Threads to test this hypothesis. Are the values you obtain fairly stable? Do you conclude that your
observations are n log n?

(¢) Now rerun the sorts for sample size 10,000, but use ordered data. What was the time that you
observed for 10,0007 Is this an improvement over the time observed in (a)?

(d) Finally, run Sort4 for 10,000 sample size with the values in reverse order (Sample Order = -
100). How does this compare to the times observed in (a) and (c)?

Appendix C Data Structures Lab Manual page 63

5. Run Sort5, Insertion Sort, and observe the elapsed time for sorting 1,000 to 5,000 values in
steps of 1,000. The reason that we use 5,000 instead of 10,000 will become obvious.

(a) Enter the time for 5,000 below:

(b) This sort is Insertion Sort which is supposed to be an n® sort. Use the Coefficient button of
Threads to test this hypothesis. Are the values you obtain fairly stable? Do you conclude that your

observations are n>?

(c) Now rerun the sorts for sample sizes 1,000 to 10,000, but use ordered data. What was the time
that you observed for 5,000? Is this an improvement over the time observed in (a)?

(d) Finally, run Sort3 for 5,000 sample size with the values in reverse order (Sample Order = -
100). How does this compare to the times observed in (a) and (c)? Do you have any explanation
for this?

Appendix C Data Structures Lab Manual page 64

