TRS-80 T-BUG • Game Playing Algorithm • Robots Game

Personal

 Computing
S \quad Software for

How to Fail with a Business System

Personal Computing

Page 38

Page 43

Cover Design
by Stephen C. Fischer

DEPARTMENTS

FEEDBACK .7

RANDOM ACCESS 11 COMPUTER CHESS . . . 77
COMPUTER BRIDGE . . 87
BOOKSHELF 89
WHAT'S COMING UP . 96
AD INDEX 110

LAUNCHING PAD

"G" is for Graphics 38
This program lets you create an alphabet picture book for children. Each time they type in a letter, they get back an appropriate picture - apple for A, bear for B, for example. by Mark Zimmerman
Tired of Typing GOTO? Try T-Bug 54The author reviews Radio Shack's T-BUG cassette, which allows assemblylanguage programming on the TRS-80. by William L. Colsher
DIGGING IN
Planned Programming: The Thoughts Behind the Structure 29Careful planning before you start writing code makes your overall pro-gramming effort much simpler. Just follow the steps outlined in this articleto produce logical, structured programs. by Robert T. Nicholson
A General Game Playing Program 70
Incorporating this look-ahead algorithm into your games lets you play against the computer. The author shows you how with programs for Tic- Tac-Toe and Kalah. by Herbert L. Dershem
Doubling Space on Single-Sided Disks 76
This simple procedure can double your memory storage, for an investment of pennies. by Rodney L. Wright.
IN THE MONEY
Rate-Setting and Billing for Small Utilities 43
Many businesses, including small utilities, must vary rates according to use. This program package assists in establishing rates, maintains records and prepares bills. by Stephen P. Smith
How to Fail with a Business System 67Here are some of the things that can go wrong with your business computer- and how to avoid or correct them. by Rodnay Zaks
ON THE LIGHTER SIDE
Robots60
Trapped in a room with killer robots, you must summon all your courage andskill to survive. by William Lappen
FUTURE COMPUTING
Sponsored "Programs" are Coming 22
Large companies can't ignore the growing popularity of personal computersand the potential advertising medium they represent. Soon you may typeRUN and see a familiar line on your CRT: "This program is brought to youby . . ." by William R. Parks

619 ©. \mathfrak{P}. Auv. Box 2017 Fargo, $\mathcal{O} D, 58102$
(701) 235-8145

DEALER INQUIRIES INVITED
SEE US AT THE NCC
See our other ad in this Magazine

A General Game Playing Program

BY HERBERT L. DERSHEM

Programmers have used the look-ahead strategy to develop competitive game playing programs for games like checkers and chess. A general form of this look-ahead algorithm can be described in terms of a recursive procedure implemented in BASIC for specific games. If your BASIC processor accepts recursive subroutine calls, then you can use this algorithm to play any suitable game by programming three additional subroutines that describe the game. (For more information on recursive programming, see "Recursive Programming in BASIC", April PC.)

Consider a game with two players called "computer" and "opponent". At any given point in the game, two descriptors describe the situation: the game status (GS), often the status of the game board; and the player to move next (PM), either "computer" or "opponent". Each GS, PM pair results either in a completed game with a winner, or in a draw, or in a set of legal moves for PM. Each legal move maps the GS,PM pair. Let's consider the case where the players alternate moves, making the new PM generated by a move always different from the previous PM.

Now we're ready to recursively state the look-ahead algorithm which, given a GS,PM pair, evaluates all the legal moves available to player PM and determines the optimal one.
Algorithm Evaluate to find the best move BM for player PM from game status $G S$ with evaluation of E.
Evaluate (GS,PM,E,BM)

1. If(GS,PM) is directly evaluatable, evaluate it and place result in E ; return.
2. Generate $\mathrm{MV}_{1} \cdot \mathrm{MV}_{2} \ldots \mathrm{MV}_{\mathrm{n}}$, the set of all legal moves from (GS,PM), and $\mathrm{GS}_{1}, \mathrm{GS}_{2}, \ldots, \mathrm{GS}_{\mathrm{n}}$, the corresponding set of game statuses after the legal moves are applied to GS.
3. If $\mathrm{PM}=$ computer, call Evaluate $\left(\mathrm{GS}_{\mathrm{i}}\right.$, opponent, $\left.\mathrm{E}_{\mathrm{i}}, \mathrm{BM}_{\mathrm{i}}\right)$ for $\mathrm{i}=$ $1,2, \ldots, n$; for E_{k}, the largest of $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{n}}$, set $\mathrm{E}=\mathrm{E}_{\mathrm{k}}, \mathrm{BM}=\mathrm{MV}_{\mathrm{k}}$; return.
4. If $\mathrm{PM}=$ opponent, call Evaluate $\left(\mathrm{GS}_{\mathrm{i}}\right.$, computer, $\left.\mathrm{E}_{\mathrm{i}}, \mathrm{BM}_{\mathrm{i}}\right)$ for $\mathrm{i}=1$, $2, \ldots, n$; for E_{k}, the smallest of $\mathrm{E}_{1}, \mathrm{E}_{2} \ldots$, E_{n}, set $\mathrm{E}=\mathrm{E}_{\mathrm{k}}, \mathrm{BM}=\mathrm{MV}_{\mathrm{k}}$; return.

Evaluation of a game status is always from the computer's point of view. The larger the evaluation, the better the status is for the computer. Therefore, the principle behind this algorithm is that the computer always chooses from the legal moves that move resulting in a game status with largest evaluation. On the other hand, the opponent always chooses the move with the smallest evaluation, since that move is the least desirable for the computer.

How does the computer determine whether a move is directly evaluatable? If a game status is terminal, there are no further moves. Or sometimes the computer stops when a certain number of levels of moves have been examined. For example, a 3-level look-ahead will examine all of the computer's legal responses. As you can see, the number of moves that must be examined grows rapidly as the level of the search infinal level (level 3 in the example above), you must implement some heuristic procedure to evaluate the GS, PM pair. The ability of this procedure, the static evaluation function, to ac-
curately evaluate the game's status greatly affects how well the computer will compete. There's a trade-off between the depth of look-ahead and the validity of the static evaluation funcdion. If the static evaluation function is perfect, the computer can use it to evalute all its alternatives directly and not look ahead at all. On the other hand, if the computer can look ahead clear to the end of the game, examining all of the alternatives, it has no need for a static evaluation function since the perfeet evaluation function is the game resuit: win, lose or draw. In practice we find ourselves somewhere between those two extremes.

For the general BASIC version for this algorithm, see Listing 1. Two additions to the algorithm have been made to speed up the search. Both halt the process when it's obvious no more searching is needed.

Suppose the search is at a level generating the computer's resporises. If, at the preceding level, the opponent's best move evaluates to 4 and so far the computer's best move at this level evaluates to 5 , why continue the search at this level? The opponent will never choose the current move under consideration because it will evaluate to no smaller than 5 which is already 1 worse than the best move the opponent has examined so far. This condition is tested in line 2100 of the program in Listing 1. In tree searching this process, called alphabeta pruning, usually saves search time.

Additional savings can result from statement 2130 where, as soon as a player has found a sure winner for himself, he stops searching.

Now let's look at two implementtions of the algorithm in Listing 1. The first, found in Listing 2, is the familiar game of tic-tac-toe. The implementstion requires the addition of three subroutines to the general game status evaluator at 2000 . These are 1000 , a move generator; 3000 , a static move evaluation function; and 4000, a gameover tester. But the choices shown here are examples: try designing your own improved versions of these subroutines.

The particular implementation here uses a maximum search depth of 10 levels. For tic-tac-toe, this level implies all searches will be terminated by the end of the game since the longest
possible game is 9 moves. The static evaluation function returns 100 if the position is a win for the computer, -100 if it's a win for the opponent, and 0 if it's a draw.

Subroutine 2000 has been modified slightly from that shown in Listing 1 to accommodate the presence of only one subscripted variable in Radio Shack Level 1 BASIC, the system on which this program was implemented.

The ancient game of Kalah, our second game, is played on a board with six small pits on either side and large pits at each end. The game begins with 3 markers in each of the small pits as shown in Figure 1.

Figure 1 Initial position of Galah board

The players alternate moves according to the following rules:

1. A player moves by choosing a pit on his side of the board and distributing the markers contained in that pit into other pits counterclockwise around the board beginning with the counterclockwise neighbor of the emptied pit. He places one marker in each pit and Kalah in turn until all markers removed are distributed. Example: If the opponent began play from the initial board shown above by emptying the fifth pit from the left on his side, after his move the board would look like Figure 2.

Figure 2 Example of a move

complete business accounting packages in
Pascal

You've read about this efficient new block structured language. Now for the first time you can run your business with completely integrated accounting packages written in PASCAL, realizing the speed and et ficient file handling capabilities inherent to this langage.

GENERAL LEDGER

Allows over a thousand general ledger account mumbers. Features a transaction register that forms the AUDIT TRAIL for all transactions. Easy entry and editing of transactions and special routines to prohibit posting of unbalanced transactions that might otherwise go unnoticed.

ACCOUNTS PAYABLE
Allows over a thousand vendors which you can ADD. DELETE or CHANGE. Allows easy entry and editing and the voucher register forms a clear AUDIT TRAIL for your permanent records.

ACCOUNTS RECEIVABLE
Allows for over ten thousand customers (limited by disk storage) easy entry and editing of sales including invoices, finance charges, and credit and debit memCash receipts are easily entered and listed prior to posting. All transactions are posted not only to the ACCOUNTS PAYABLE file but also to the GENERAL LEDGER.

INVENTORY CONTROL (ORDER ENTRY)
Allows up to 32,000 items, (depending on storage media). Prints invoices, picking tickets and stock status reports. Posts transactions to A/R or A P. metic updating andy sis by product category Autominute stock status. Re-order figs tell you when is time to order a low stock or out of stock item
EASY TO USE

All these application programs are menu oriented for ease of operation and minumum personnel orientation and training time. All screens are formatted for clear concise data entry and editing. All totally interactive and easy to comprehend.

AVAILABLE TODAY!
Currently available on floppy disk for the Pascal Microengine -single or double density. Single and RX diskettes for PD Pl Systems. Also available in single density diskette for any system that runs UCSD Pascal. Also available on 5440 cartridge disks and other media. Write today for our Complete Information Package.

Sine

$$
\begin{aligned}
& 610 \text { © N.P. Ave. } \\
& \text { Box } 2017 \\
& \text { Fargo, } \mathcal{N D} \text {, } 58102 \\
& \text { (701) 235-8145 } \\
& \text { DEALER INQUIRIES INVITED } \\
& \text { SEE US AT THE NyC }
\end{aligned}
$$

2. If the last marker distributed by a player lands in that player's Kalah, the player must empty another pit on his side. This move is called a continuation. The continuation might have another continuation, and so on. Example: If the computer's response to the above move was to empty the third pot from the left, it would receive a continuation. This move and its continuation are illustrated in Figure 3.
3. If the last marker distributed on a player's move lands in an empty pit on the player's side of the board, and if some markers are in his opponents pit directly opposite this pit, then the last marker distributed and all the markers in the opposite pit are placed in the Kalah of the player making the move. This move is called a capture. Example:If the opponent now empties the lands in the empty pit and captures the

Guess who builds

 this great \$19.95 Logic Probe. You. With this easy-to-build Logic Probe Kit from CSC and just a few hours of easy assembly thanks to our very descriptive step-by-step manual -you have a full performance logic probe. With it, the logic level in a digital circuit translates into light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from either leading edge. You'll be able to probe deeper into logic with the LPK-1, one of the smarter tools from CSC.

Complete,

 easy-to-follow instructions help make this a one-night project.

70 Fulton Terr., New Haven, CT 06509 (203) 624-3103, TWX 710-465-1227 OTHER OFFICES: San Francisco: (415) 421-8872, TWX 910-372-7992 Europe: CSC UK LTD. Phone Saffron-Walden 0799-21682, TLX 817477 Canada: Len Finkler Ltd., Ontario
Call toll-free for details 1-800-243-6077

[^0]
computer's four markers on the opposite side (Figure 4).

The winner has the most markers in his Kalah at the end of the game. When a player has no more markers in his pits and it's his turn to move, the game ends. At that point the opponent places all the markers in his pits into his Kalah, and the winner is determined.

Listing 3 shows the application of the game playing algorithm to this game. The continuation complicates matters by requiring two locations to store a move as well as a special coding scheme for continuation moves.

Figure 3 Example of a move and continuation

Figure 4 Example of a capture

Now that you've seen these examples, you can implement this algorithm for other games. You might want to improve the computer's performance on these games by providing better static evaluation functions or increasing the maximum depth of search. You must proceed with caution, however. Look-ahead algorithms can consume lots of computer time. So be prepared to wait for the computer's moves.

Listing 1 - Game-Playing Algorithm

1500 REM GENERAL GAME PLAYING PROGRAM. THIS SUBROUTINE,
1510 REM KHICH IS CALLED BY 1990 , MILL ACCEPT A GAME STATUS STORED
1520 REM IN A (1) THRU A (S) AND RETURN IN S (1) THE BEST MOVE POUND
1530 REM AND IN E THE EVALOATION OP THAT MOVE.
1540 REM PARAMETERS:
1550 REM S IS THE NUHBER OF LOCATIONS NEEDED TO STORE GAME STATOS.
1560 REA M IS THE MAXIMOM DEPTH OF SEARCH
1570 REM N IS A VALUE $\angle H I C H$ IS IMPOSSIBLE CODE POR A MOVE AND
1575 REM REPRESENTS A NOLL MOVE.
1580 REM W IS A VALUE SUCH THAT ANY GAME STATUS WHICH EVALIATES
$\begin{array}{ll}1590 \text { REA } \\ 1600 \text { REM } & \rangle=G \text { IS A YIN FOR THE COHPUTER AND ANY KHICH EVALOATES }\end{array}$
1600 REM 1610 REM =-G IS A HIN POR THE OPPONENT.
1610 REM
1620 REM VARIABLES
1620 REM VARIABLES:
1630 REM L IS T
1630 REM L IS THE LEVEL INDICATOR POR THE CURRENT LEVEL OP SEARCH
1640 REM Z INDICATES PLAYER YHO IS MOVING: $1=$ COMPUTER, $1=1=0$ PPONENT
1650 REM Q IS THE STACK POINTER. IT INDICATES THE POSITION IN THE
1660 REM STACK DIMENSIONED VARIABLE WHERE THE CORRENT GAME STATU
1670 REM DESCRIPTION BEGINS.
$\begin{array}{lll}1680 & \text { REM } & \text { M(L) IS THE CURRENT MOVE BEING EXAMINED AT LEVEL L } \\ 1690 & \text { REM } & \text { S(L) IS THE BEST MOVE EVMLUATED SO FAB }\end{array}$
1690 REM S(L) IS THE BEST MOVE EVALUATED SO FAR AT LEVEL L.
$\begin{array}{ll}1700 & \text { REM } \\ 1710 \text { REM (L) IS THE EVALUATION OF THE BEST MOVE SO FAR AT LEVEL } L\end{array}$
$\begin{array}{ll}1710 \\ 1720 & \text { REM } \\ 17 & \text { IS THE VARIABLE IN HHICH THE EVALUATIOA OP THE BEST MOVE }\end{array}$
1730 REM
IS RETURNED
1740 REM SUBROUTINES:
1750 REM 1000 GENERATES PROM MOVE M(L), THE NEXT MOVE IN A SEQOENCE 1760 REM OF ALLOMABLE MOVES PROM THE GAME STATUS STORED AT POSITION
1770 REH O IN THE STACK. THE MOVE IS STORED R IN THE STACK. THE MOVE IS STORED IN M (L), AND THE NEH
1780 REM GAME STATUS IS PLACED IV THE STACK BEGTMNTNG 1790 REM Q +5 . THE FIRST MOVE IN THE SEOOPNCE TS GENERAT POSITION $\begin{array}{ll}1800 \mathrm{REM} & \mathrm{M}(\mathrm{L})=\mathrm{N}, \mathrm{THE} \text { NOLL MOVE, THE SEQUBNCE IS GENERATED MHEN } \\ 18 \mathrm{~T}\end{array}$ 1810 REM IF $M(\mathrm{~L})$ I IS THE LAST MOVE IN THE SUBROUTINE IS CALLED. 1815 REM IS RETURNED. 1820 REM 3000 EVALUATES
1830 REM OF THE STACK THE GAME STATUS STORED BEGINNING AT POSITION 1840 REM VALUE IS STACK USING A STATIC EVALUATION FUNCTION. THE 1850 REM 4000 TESTS THE GAMI ST
1860 REM OF THE STACK. GAME STATUS STORED BEGINNING AT POSITION Q 1870 REM IF NO HORE MOVES ARE POSSIRLE ENDING POSITION, THAT IS,

1880 REM OTHERMISE, O IS RETURNED AS ZERO.
1890 REM
1900 REM THIS SUBROUTINE IS HRITTEN IN RADIO SHACK LEVEL I BASIC DIMENSIONED VARIABLES M.S EXTRA
1920 REM THESE HAVE BEEN USED FOR CLABITY
1930 REM
1989 REM INITIALIZE L AND Z ON THE PIRST CALL.
199 L=0: Z=-
$2000 \mathrm{~L}=\mathrm{L}+1$ UPDATE L, Q, AND Z FOR THE NEXT LEVEL OF SEARCH.
$2000 \mathrm{~L}=\mathrm{L}+1: \mathrm{Q}=\mathrm{S}(\mathrm{L}-1)+1: \mathrm{Z}=-Z$
2009 REM TEST IP GAME IS OVER.
2010 GOSUB 4000
$2018 \mathrm{P} M \mathrm{MF}$
2018 REM IF LEVEL IS TO THE MAXIMOX OB GAME IS OVER, EVALOATE
2019 REM USING STATIC EVALUATION FONCTION AND RETURN.
2020 IF (L $<=M) *(O=0)$ GOTO 2050
2030
2040 GOSUB 3150
2040 GOTO 2150
2049 REA INITIALIZE POR BEST POSSIBLE MOVE SEARCH.
$2050 \mathrm{M}(\mathrm{L})=\mathrm{N}: ~$
$2050 \mathrm{M}(\mathrm{L})=\mathrm{N}: \quad \mathrm{S}(\mathrm{L})=\mathrm{N}: \mathrm{B}(\mathrm{L})=-\mathrm{Z} * \mathrm{H}$
2059 REM GENERATE NEXT MOVE
2059 REM GENERATE NEXT MOVE
2060 GOSUB 1000

2079 REM EVALUATB $\mathrm{E}=\mathrm{B}$ (L): GOTO 2150
2080 GEM EVALUATE THIS MOVE, 2000
$208(L)$. BY A RECURSIVE CALL,
2086 REM IF THE
2086 REM IF THE BEST MOVE AT THIS LEVEL IS ALREADY BETTER FOR Z 2088 REM THIS MOVE YILL NOT BE CHOSEN BY $-Z$ ANYR YAS FOR $-Z$, THEN 2089 REM WITHOOT EVALUATING THE OTHER MOVES AT THIS LEVEL. 2090 IF L=1 GOTO 2110
2100 IF $2 * \mathrm{E}\rangle=\mathrm{Z} * \mathrm{~B}(\mathrm{~L}-1)$ THEN $\mathrm{B}(\mathrm{L})=\mathrm{Z}:$ G OTO 2150
2108 REM IF THIS IS THE FIRST RESPONSE TRIED OR IT IS BETTER 2110 IP (S (L) $<>N$)* $(Z * E<E Z * B(L)$ RECORD IT AS BEST SO PAR.
$2120 \mathrm{~B}(\mathrm{~L})=\mathrm{E}: \mathrm{S}(\mathrm{L})=\mathrm{H}(\mathrm{L})$
2129 REM IP THIS RESPONSE WINS, THERE IS NO NEED TO SEARCH MORE. 2130 IF Z*B(L) <H GOTO 2060
2149. REM ADJUST L, O, AND Z AND HETURN.
$2150 \mathrm{~L}=\mathrm{L}-1$: $\mathrm{O}=\mathrm{O}-\mathrm{S}$:
$2150 \mathrm{~L}=\mathrm{L}-1: \mathrm{Q}=\mathrm{Q}-\mathrm{S}: \mathrm{Z}=-\mathrm{Z}$: RETURN RETURN.

HOBBY WORLD CALL TOLL FRE: (800) 423-5387 CA, HI, AK: (213) 886-9200

TRS-80 SOFTWARE
Cat No.
$\begin{array}{ll}\text { 1093 } & \text { Description } \\ 1041 & \text { SARGON CHESS, II }\end{array}$
STAR TREK, II.
SCI G GAMES
TAROTVII.
CRIBBAGEIV
CRIBBAGEVII.
REAL TIME LUNAR LANDER II
BRIDGE CHALENGER
AIR RAID IIII.
PILOTIIII
PLIOTIII...
OTHELLO III.
SMALI BUSINE
SMALL BUSINESS BOOKKEEPNG I iil
DAII BIORHYTHM PROGRM
MICRO TEXT EDITOR I/II
INVENTORY MODULAR1//ii.
EDIT-80, text editor II (32 K).

ANADEX PRINTER Model DP-8000 $\$ 999$
Connects easily to most popular computers including TRS-80
3 basis ASCII compatible in terface configurations are provided. 80 columns. 112 cps.
84 84 lines per min, bi directional uses standard low-cost papers. 96 character set, 9×7 dot mat-
rix characters. Original plus
up to 3 copies. Skip-over perforation conies. Skip-over. width printing, 8 programmable vertical tab positions. Excellent readability, Superior to other printers costing three
times as much.

TRS-80 LEVEL III BASIC $\$ 42$ As advertised in March Interface. Loads on top
of level 11 , turns TRS-80 into a powerful system. Solves poweriul problems, cures keyboard beounce" Software cas sette, has the power of Guaranteed satisfaction! Cat No. 1332

TRS-80
FORTRAN $\$ 340$ PLUS
As advertized! Supplied on 2
mini-diskettes, and requires 32 K -dskettes, and requires a drive. Written by Microsoft III. Includes Fortran compiler III . Includes Fortran compiler,
$\mathrm{Z}-80$ macro assembler, text editor, and linking loade
Adds speed and versatility.

TRS-80 ELECTRIC PENCIL Character oriented word processing system. Produce mail-
ing lists, business forms, large ing lists, business forms, large
numbers of original correspondance, camera ready copy for printing...all on your TRS-80.
No carriage returns or hyphe. No carriage returns or hyphe-
nations. Iline formatting is nations, line formatting is
done by the Electric Pencil! Also features right margin
and tilting, and many com-
binations on binations of line lenath, pom-
length, etc. For TRS-80 level lengh, etc. For TRS- 80 level
1 or $2,16 \mathrm{~K}$, and virtually any
\$95

SHUGART SA-400 MINIFLOPPY DRIVE $\$ 295$

Hard and soft sectoring.
single density, 35 track. single density, 35 track
Requires power supply.
VERBATIM
51/4", DISKETTES
$\$ 27$ box of 10

 1148 Soft sector IRS-80, Apple1148 Hard, 10 hole North Star 1149 Hard, 16 hole Micropolis

BUY 7,

 GET 1 FREE!*Buy 7 of one type, get the eighth of that type free!

Order by type no.	
${ }_{2}^{172084}$	S300
	, 11.20
coill	1.00
${ }_{52019}$	${ }_{3}^{8.25}$

DATA CASSETTES

10 for $\$ 17$
Highest quality, leader-
less! With protective less! With
plastic case.
Cat No. 1142
$8^{\prime \prime}$ DISKS

- Single density $\$ 40$ box of 10 Cat No. Type 1145 sector holes,
1 index hole
1146 IBM $32,3740,3540$,
 3770, 3790

Cailtornia Computa Systems MEMORY ADD-ON 16K \$65 For APPLE, TRS-80, EXIDY Everything you need! special tools, no soldering! 250 nsec
Cat No. 1156

FREE CATALOG!
New, hot off the press!
Top quality, low cost Top quality, low cost
factory fresh IC's, leds, rectory fresh IC's, leds,
readouts, semis, computer add-ons, boards, test equipment, books, soffware, PC aids, and

19355 BUSINESS GTR DR.-6L6 NORTHRIDGE, GA 91324

Listing 2 －Tic－Tac－Toe

954 REM TIC－TAC－TOE HOVE EVALUATOR IN RADIO SHACK LEVEL I BASIC 956 REM THE BOARD POSITION IS SORED IN $A(Q)$ THRO $A(Q+8)$ AS
958 RBM

962 REM $\quad \mathrm{REM} \quad \mathrm{XXX}$
963 REM
964 REM
968 REA A POSITION UNOCCUPIED CONTAINS A O
972 REA A FOSITION OCCUPIED BY THE COMPUTER＇S MARK CONTAINS A 1.
972 REA A EOSITION OCCUPIED BY THE COMPUTER＇S MARK CONTATNS A 1.
974 REM A POSITION OCCUPIED BY THE OPPONENT＇S MARK COHTAINS A 4.
976 REM ARE STORED IK A（L）PROM THE GENERAL ALGORITHM（SEE PIG．
976 REM ARE STORED IN A $(Q+9), A(Q+10)$ ，AND $A(Q+11)$ ，RESPECTIVELY．
978 REM VALUES OF PARAMETERS：
980 REM $\quad \mathrm{S}=12$
$982 \mathrm{REM} \quad \mathrm{H}=10$（SEARCHES UNTIL COMPLETION OF GAME）
$984 \mathrm{REM} \quad \mathrm{N}=0$
988 REM
990 REM
992 REM SUBROUTINE 1000 STORES IN A $(Q+9)$ THE NEXT MOVE POR BOARD
994 REM POSITION $\AA(Q)-\AA(Q+8)$ FROM PREVIOUS MOVE $A(Q+9)$ ．IP $A(Q+9)=0$ ，
996 REM FIRST MOVE IS RETURNED．IP THERE ARE NO HORE MOVES，A（Q＋9）
998 REA IS RETURNE AS ZERO．NEK BOARD IS STORED IN A $(\mathrm{Q}+\mathrm{S})-\mathrm{A}(\mathrm{Q}+\mathrm{S}+8)$
$1000 \mathrm{~A}(\mathrm{Q}+9)=\mathrm{A}(\mathrm{Q}+9)+1$
1010 IF $\mathrm{A}(\mathrm{Q}+9)>9$ THEN $\mathrm{A}(\mathrm{Q}+9)=0$ ：RETURN
1019 REM IP POSITION IS OCCOPIED，TRY THE NEXT ONE．
1020 IF A $(\mathrm{Q}+\mathrm{A}(\mathrm{Q}+9)-1)<>0$ GOTO 1000
1030 POR $I=0$ TO 8
$1040 \quad \mathrm{~A}(\mathrm{Q}+\mathrm{S}+\mathrm{I})=\mathrm{A}(\mathrm{Q}+\mathrm{I})$
1050 NEXT I
1059 REM RECORD THE MOVE．
$1060 \times(\mathrm{Q}+\mathrm{S}+\mathrm{N}(\mathrm{Q}+9)-1)=(\mathrm{Z}=1)+4 *(\mathrm{Z}=-1)$
107 C RETURN
1986 REM
1988 REM TIC－TAC－TOE VERSION OP GENERAL EVALUATION ALGORITHM
$1990 \mathrm{~L}=0: \quad \mathrm{Z}=-1: \quad \mathrm{S}=12: \quad \mathrm{H}=10: \mathrm{N}=0: \quad \mathrm{K}=100$
$2000 \mathrm{~L}=\mathrm{L}+1: \mathrm{O}=\mathrm{S} *(\mathrm{~L}-1)+1: \quad \mathrm{Z}=-\mathrm{Z}$
2010 GOSUB 4000
2020 IF $(\mathrm{L}<=\|) *(0=0)$ GOTO 2050

2030 GOSOB 3000
2040 GOTO 2150
$2050 \mathrm{~A}(\mathrm{Q}+9)=\mathrm{N}: \mathrm{A}(\mathrm{Q}+10)=\mathrm{N}: \mathrm{A}(\mathrm{Q}+11)=-\mathrm{Z}$＊ W
2060 GOSUB 1000
2070 IP $\mathrm{A}(\mathrm{Q}+9)=\mathrm{N}$ THEN $\mathrm{E}=\mathrm{A}(\mathrm{Q}+11)$ GOTO 2150
2080 GOSUB 2000
2090 IP L＝1 GOTO 2110
2100 IP $\left.Z^{*} \mathrm{E}\right\rangle=\mathrm{Z} * \mathrm{~A}(\mathrm{Q}-\mathrm{S}+11)$ THEN A $(\mathrm{Q}+11)=\mathrm{E}$ ：GOTO 2150
2110 IP $(\mathrm{A}(\mathrm{Q}+10)<>N) *\left(Z * E<=Z^{*} \mathrm{~A}(\mathrm{Q}+11)\right)$ GOTO 2060
$2120 \mathrm{~A}(\mathrm{Q}+11)=\mathrm{E}: \mathrm{A}(\mathrm{Q}+10)=\mathrm{A}(\mathrm{Q}+9)$
2130 IF $Z^{*} A(Q+11)<H$ GOTO 2060
$2150 \mathrm{~L}=\mathrm{L}-1: \mathrm{Q}=\mathrm{Q}-\mathrm{S}: \mathrm{Z}=-\mathrm{Z}$ ：RETURN
2986 REM
2988 REM STATIC MOVE EVALUATOR FOR TIC－TAC－TOE
2990 REM SUBROUTINE EXAMINES A $(Q)-\mathrm{A}(\mathrm{Q}+8)$ AND RETURNS：
2992 REM E＝100 IF KINKING POSITION FOR THE COHPUTER．
2994 REM E＝－100 IF WINNING POSITION FOR THE OPPONENT

3000 GOSUB 4000
3010 IP ABS $(V)=100$ THEN $E=V$ ：RETURN
3020 IP $\nabla=8$ THEN $E=0$ ：RETURN
$3030 \mathrm{E}=-0.5$ ：RETURN
3988 REM
3990 REM GAME－OVER TESTER POR TIC－TAC－TOE
3992 REM SOBROUTINE EXAMINES A（Q）－A（Q＋8）AND RETURNS：
3994 REM $0=1, V=100$ IF MINNING POSITION POR COMPUTER．
3996 REM $0=1, V=-100$ IP KINNING POSITION FOR OPPONENT
3998 REM $0=1, \forall=8$ IF DRAW POSITION．
$3999 \mathrm{REH} \quad O=0, \mathrm{~V}<8 \quad \mathrm{IF}$ NOT A GAME ENDING POSITION．
4000 RESTORE：$V=0$
4010 FOR $I=1$ TO 8
4020 READ A，B，C
$4030 \quad \mathrm{~T}=\mathrm{A}(\mathrm{Q}+\mathrm{A})+\mathrm{A}(\mathrm{Q}+\mathrm{B})+\mathrm{A}(\mathrm{Q}+\mathrm{C})$
4040 IP $T=3$ THEN $V=100$ ：$O=1$ ：RETURN
$\begin{array}{ll}4050 & \text { IF } \\ 4060 \quad \text { TF } \\ 402 & \text { THEN } V=-100: 0=1: \text { RETVRN }\end{array}$
$4060 \quad \mathrm{IF} \quad(\mathrm{T}=5)+(\mathrm{T}=6)+(\mathrm{T}=9)$ THEN $\mathrm{V}=\mathrm{V}+1.1 .4070 \mathrm{NEXT} \mathrm{T}$
407
4070 NEXT I
$4080 \mathrm{O}=(\mathrm{V}=8)$
090 RETORN
STORES ALL 8 COMBINATIONS OF POSITIONS POR WINNING． 4100 DATA $0,1,2,3,4,5,6,7,8,0,3,6,1,4,7,2,5,8,0,4,8,2,4,6$

How About POSTING 1，000 RECORDS to the GENERAL LEDGER in 7 MINUTES？
It＇s possible with New Ware＇s INTER－ ACTIVE system that has been SERVICE BUREAU TESTED and CPA APPROVED！

Individual Packages Are：

1．General Ledger
4．Inventory
2．Accounts Receivable 5．Payroll／Personnel
3．Accounts Payable

Order Today：Each Package \＄120．00＊
－Disk with Source Code，add $\$ 10.00$
（shipped only with packages）
Disk with Demo Data，add $\$ 10.00$
（shipped only with packages）
The packages have been designed for Apple II single or dual disk systems with 32 K of user memory with or without Applesoft 2 Firmware． Standard No Charge Features：
－Terminal or printer report selection
－High Speed Journal to Ledger Posting
A．Automatic General Ledger
Journal Transaction generation
B．Automatic Inventory transaction generation
C．Automatic Accounts Receivable transaction generation
D．Real time accounts receivable application system

Listing 3 - Kalah

```
938 REM KALAH GAME EVALUATOR IN RADIO SHACK LEVEL I BASIC.
940 REM THE BOARD IS STORED IN A(Q) THRU A (Q+13) AS
942 REM
944 REM COMPOTER'S PITS
946 REM A(Q+12) A(Q+11) A (Q+10) A(Q+9) A Q Q+8) A(Q+7)
950 REM A(Q+13) A(Q) A (Q+1) A (Q+2) A (Q+3) A (Q+4) A (Q+5)
M50 REM A(Q) A(Q+1) A(Q+2) A(Q+3) A (Q+4) A (Q+5)
```

956 REM A SIMPLE HOVE IS REPRESENTED BY AN INTEGER $0-5$ WITH 0
958 REM REPRESENTING THE PIT FARTHEST FROM THE PLAYER'S KALAH
960 REM AND 5 THE PIT NEAREST THE PLAYER'S KALAH.
962 REM A CONTINUATION MOVE IS THE SEQUENCE OPI SIMPLE HOVES CODED
965 REM (MOVE1)*6(I-1) \& (MOVE2)*6(I-2) 4.... 966 (MOVEI)*60.
966 REA THE LCCATION POLLOHING THIS CONTAINS 6 (968 R-1) TO INDICATE
968 REM THE NUMBER OP CONTI NUATIONS.
972 RBM $S(L)$ IS STORED IN A $(\mathrm{Q}+14), \mathrm{A}(\mathrm{Q}+15)$
974 REM S (L) IS STORED IN A $(\mathrm{Q}+16)$, $\mathrm{A}(\mathrm{Q}+17)$
976 REM VALUE OF PARAMETERS:
978 REM $\mathrm{S}=19$
980 REM IS UNDER EXTERNAL PROGRAM CONTROL
$982 \mathrm{RRM} \quad \mathrm{N}=-1$
986 REM
$H=100$
988 REA SUBROUTINE 1000 STORES IN A $(Q+14)$, $A(Q+15)$ THE NEXT MOVE FOR

994 REM IF THERE ARE NO MORE MOVES, A (O+14) IS RETORNED AS
996 REM THE RESULTING BOARD POSITION IS STOREDIN A $(Q+S)-A(Q+S+13)$.
997 REM
998 REM INCREBENT MOVE AND STORE IN T AND R
$1000 \lambda(\mathrm{Q}+14)=\lambda(\mathrm{Q}+14)+1: \mathrm{T}=\mathrm{A}(\mathrm{Q}+14): \mathrm{R}=\mathrm{A}(\mathrm{Q}+15)$
1009 REM INITIALIZE NEH BOARD.
1010 POR $\mathrm{I}=0$ TO 13: A $(\mathrm{Q}+\mathrm{S}+\mathrm{I})=\mathrm{A}(\mathrm{Q}+\mathrm{I}): \mathrm{NEXT}$ I
1019 REG IP MOVE AT ONE CONTINOATION EXHAUSTED,COME BACK A LEVEL.
1020 IF (INT (T/6)*6=T)* (Rく>1) THEN T=T/6: R=R/6: GOTO 1020
1024 REM TEST FOR LAST HOVE.
1025 IP $(\mathrm{T}=6)$ * $(\mathrm{R}=1)$ THEN $\mathrm{A}(\mathrm{Q}+14)=-1$: RETURN
$1030 \quad \mathrm{~V}=\mathrm{T}$: $\quad \mathrm{V}=\mathrm{R}$
1039 REK PULL OUT SIMPLE MOVE.
1040 X*INT (O / V): $\quad \mathrm{O}=\mathrm{O}-\mathrm{X} * V: V=I N T(V / 6)$
1049 REM P IS THE PIT POSITION ON BOARD OP MOVE.
$1050 \mathrm{P}=7 *(\mathrm{Z}=1)+\mathrm{X}$
1059 REM IP PIT IS EHPTY, GO GET ANOTHER HOVE.
1060 IP $A(\mathrm{O}+\mathrm{P}+\mathrm{S})=0$ THEN $\mathrm{T}=\mathrm{T}+1$: GOTO 1010
1069 REM MAKE THE MOVE.
$1070 \quad \mathrm{D}=\mathrm{Q}+\mathrm{S}: \mathrm{POR} \mathrm{I=P+1} 10 \mathrm{TO} \mathrm{P}+\mathrm{A}(\mathrm{D}+\mathrm{P})$
$1080 \mathrm{~J}=\mathrm{I}-$ INI $(\mathrm{I} / 14) * 14$
$1090 \wedge(\mathrm{D}+\mathrm{J})=\mathrm{A}(\mathrm{D}+\mathrm{J})+1$
1100 NEXT I
$1110 \mathrm{I}=\mathrm{A}(\mathrm{D}+\mathrm{P}): \quad \mathrm{A}(\mathrm{D}+\mathrm{P})=0$
1119 REM IF A NEM CONTINUATION IP SOUND, GO PORHARD A LEVEL,
$1120 \mathrm{IP}(J=6+7 *(Z=1)) *(V=0)$ THEN $T=T * 6: \quad \mathrm{R}=\mathrm{R*} * \mathrm{C:} \mathrm{U=0:} \mathrm{~V}=1$
1129 BEH HORE CONTINOATIONS?
1130 IF $V>0$ GOTO 1040
1139 REM TEST POR CAPTURE.
11 ts $\operatorname{IF}(\mathrm{A}(\mathrm{D}+\mathrm{J})\langle>1)+(\mathrm{P}+\mathrm{I}\rangle=6+7 *(\mathrm{Z}=1))$ Gото 1170
$1150 \quad A(D+6+7 *(Z=1))=A(D+J)+A(D+12-J)+A(D+6+7 *(Z=1))$
$1160 \quad \mathrm{~A}(\mathrm{D}+\mathrm{J})=0: \wedge(\mathrm{D}+12-\mathrm{J})=0$
1169 REM MOVE COMPLETED, SO RETURN.
$1170 \mathrm{~A}(\mathrm{Q}+14)=\mathrm{T}: \mathrm{A}(\mathrm{Q}+15)=\mathrm{R}:$ RETT RN
1986 REM
1988 REH GENERAL EVALUATION ALGORITHM (PIG. 1) POR KALAH
$1990 \mathrm{~L}=0: \mathrm{Z}=-1: \mathrm{S}=19: \quad \mathrm{N}=-1: \quad \mathrm{N}=100$
$2000 \mathrm{~L}=\mathrm{L}+1$: $\mathrm{Q}=\mathrm{S} *(\mathrm{~L}-1)+1$: $\mathrm{Z}=-\mathrm{Z}$
2010 GOSUB 4000
2020 IP ($\mathrm{L}<=\mathrm{M}$) * ($\mathrm{O}=0$) GOTO 2050
2030 GOSUB 3000
2040 GOTO 2150
$2050 \wedge(Q+14)=\mathrm{N}: \mathrm{A}(\mathrm{Q}+15)=1: \mathrm{A}(\mathrm{Q}+16)=\mathrm{N}: \mathrm{A}(\mathrm{Q}+17)=1: \mathrm{A}(\mathrm{Q}+18)=-\mathrm{Z} * \mathrm{~N}$
2060 GOSUB 1000
2070 IP $\mathrm{A}(\mathrm{Q}+14)=\mathrm{N}$ THEN $\mathrm{E}=\mathrm{A}(\mathrm{Q}+18)$: GOTO 2150
2080 GOSUB 2000
2090 IP L=1 GOTO 2110
2100 IP $Z * E\rangle=Z * A(Q-S+18)$ THEN A $(\mathrm{Q}+18)=\mathrm{E}$: GOTO 2150
2110 IP A $(\mathrm{Q}+16)<>\mathrm{N}) *(2 * \mathrm{Z}\langle=\mathrm{Z} * \mathrm{~A}(\mathrm{Q}+18))$ GOTO 2060
$2120 \mathrm{~A}(\mathrm{Q}+18)=\mathrm{E}: \mathrm{A}(\mathrm{Q}+16)=\mathrm{A}(\mathrm{Q}+14): \mathrm{A}(\mathrm{Q}+17)=\mathrm{A}(\mathrm{Q}+15)$
2130 IF $\mathrm{Z} * \mathrm{~A}(\mathrm{Q}+18)$ < K GOTO 2060
$2150 \mathrm{~L}=\mathrm{L}-1$: $\mathrm{Q}=\mathrm{Q}-\mathrm{S}: \mathrm{Z}=-\mathrm{Z}$: RETURN
2982 REM
2984 REM STATIC MOVE EVALUATOR FOR KALAH.
2986 REM E=100 IF WINNING POSITION FOR THE COMPUTER.
2988 REM $E=-100$ IF WINNING POSITION FOR THE OPPONENT
2987 REM ELSE:
2988 REM E= ((CONTENT OF COMP'S KALAH)-(CONTENTS OF OPP'S KALAH))*
$2990 \mathrm{REM} \quad(1+1 /(19-\operatorname{MAX}$ CONTENTS OF A KALAH))
2996 REM
2998 REM RINNING POSITION?
3000 GOSOB 4000
$3010 \mathrm{~B}=\mathrm{A}(\mathrm{Q}+13)-\mathrm{A}(\mathrm{Q}+6)$
3020 IP $0=1$ THEN $E=100 *((E>0)-(E<0))$: RETURN
$3030 \mathrm{P}=\mathrm{A}(\mathrm{Q}+13) *(\mathrm{E}>0)+\mathrm{A}(\mathrm{Q}+6) *(\mathrm{E}<0)$
$3040 \mathrm{E}=\mathrm{E} *(1+1 /(19-\mathrm{F}))$
3050 RETURN
3992 REM
3992 REM
3994 REM GAME-OVER TESTER POR KALAH.
3996 REM $0=1$ IF GAME IS OVER,
3998
REM $O=0$ IF GAME NOT
3998 REM $O=0$ IF GAME NOT OVER.
4000 0=0
4009 REM TEST FOR A HINNER.
$4010 \mathrm{IF}(\mathrm{A}(\mathrm{Q}+13)>18)+(\mathrm{A}(\mathrm{Q}+6)>18)$ THEN $0=1$: RETURN
4010 IP $(A(Q+13)>18)+(A(Q+6)>18)$ THEN $0=1$
4019 REM TEST POR MOVER'S PITS ALL EMPTY.
$4020 \mathrm{~J}=7$ * $(\mathrm{z}=1)$
4030 FOR $I=J$ TO $J+5$
4040 IF $A(Q+$ I) $<>0$ THEN RETORN
4050 NEXT I
4059 REM THEY ARE, SO EMPTY OTHERIS PITS INTO KALAH
4060 FOR $I=7-\mathrm{J}$ TO $12-\mathrm{J}$
$4070 \quad A(\mathrm{Q}+13-\mathrm{J})=\mathrm{A}(\mathrm{Q}+13-\mathrm{J})+\mathrm{A}(\mathrm{Q}+\mathrm{I}): \mathrm{A}(\mathrm{Q}+\mathrm{I})=0$
4080 NEXT I
$4090 \quad 0=1$: RETURN

HAVING TROUBLE LEARNING BASİC?

STEP BY STEP is an interactive computer course in BASIC that's easy even for beginners. Program Design has developed a logical, structured approach that really works. At the end of STEP BY STEP, you'll be writing programs using all important BASIC commands.

AVAILABLE FOR TRS-80 LEVELS I \& II, PET, AND APPLE \|

STEP BY STEP:

- presents material in small steps
- provides guided programming practice in each lesson
- tests your progress after each lesson
- teaches actual program writing, not just terms
- is suitable for anyone from junior high up, regardless of math background

10 lessons with quizzes, plus final test 3 cassettes 80 page Workbook $\$ 39.95$ plus $\$ 1.00$ shipping
VISA \& Master Charge accepted (include number, exp. date, MC include digits above name)
Department 500
Program Design, Inc., 11 Idar Court, Greenwich, Conn. 06830

CIRCLE 8

MARKET INFORMATION BOFTWARE

Now the first complete Market Information System for TRS-BD users. A must system for anyone investing or considering investing in the stock market.

DATA BASE MANAGEMENT SYSTEM [DEMS]
Create, update, edit, display and copy the data base. Separate
systems for daily, weekly, or individual stock statistics.

- MARKET INFORMATION SYSTEM [MIS]

Analyze rallies, declines, and market turnarounds. Includes moving average and price/volume analysis. Also has short-term overbought/ oversold indicator, essential for short-term timing.

* COMPLETE DATA Files [DATA]

Complete sets of data files. Prices shown for one year's data for daily, weekly, and individual stocks. The largen your data base the more analyses you can perform.

SYSTEM	DAILY	WEEKLY	SINGLE
DEMS	14.95	14.95	9.95
Mis	19.95	5.95	5.95
DAIA	25.95	15.95	9.95

COMPLETE SYSTEM INCLUDING DNE YEAF'S DATA FOR DAILY. WEEKLY, AND FIVE STDCKS 139,95

Send Check to: Market Information Software
7215 Tod Street
Falls Church, VA 2eO46
Specify DEMS, MIS, or DATAE
SYSTEM TYPE OR SINGLE STOCK NAME
Write for more information
TRS-80 16K DISK SYSTEM REQUIRED. ND EXTRA RAM
NEEDED FOR LARGER DATA EASE.

[^0]: -Suggested U.S. resale Available at selected local distributors. Prices, specifications subject to change without notice © Copyright 1979 Continental Specialties Corporation

