Aftieles

t Computer-Enhanced Learning

Interactive Multimedia Electronic Journal o

Walie Forest University b arch 23 All sz |55 This lssus
;- }Ifihtmd“;ﬁwt i A Linked List Prototype for the Visual Representation of
. Three Aspects 0
Abstract Data Types Abstract Data Types About the authors...
3. JVALL Overview and Herbert L. Dershem, Hope College
Objectives Ryan McFall, Hope College

4. A Simple Example Noozi Uti, Northern Kentuc niversi
5, JVALL Features g , ky University

6. General Interactive
Linked List Controller Abstract

7. Educational Uses of ~ Visualization is an important tool for learning abstract data types.

%\qff‘r'*t'“ e One approach to this is to expand the class of a data type to include
7 2Active Student Visualization of all operations, thus automatically generating
Learning visualizations in programs that use the data type. A prototype of this
7.3Debugging Student approach applied to the Java LinkedList class is described in this
g, Coi’:{ﬂi‘;‘:ml paper. r}lso described are ggneral purpose coptrpllers for this process,
Future Work instructions for user generation of more specialized controllers, and

9. Acknowledgments ~ Ways this tool can be used in an educational setting.

10.References
1. Introduction

Printer friendly version The use of visualization to enhance learning of data structures and
algorithms in computer science has been popular for many years.
Because of the number of continuing projects, a progression of
packages have developed, prominent among them are BALSA [1],
Tango [2], GAIGS [3], and JAWAA [4]. In addition to these projects,
many others have developed software to aid learning through
visualization and animation of data structures and algorithms. Early
work produced scripted algorithm animations. Later these evolved to
provide user control. Most recent activity has been hosted on the
web.

This paper describes a project to develop a visualization of the
algorithms for implementing methods of the Java LinkedList class.
This visualization will serve as a prototype for visualization of any
Java Collection Class. The Java Collection classes consist of a
hierarchy of interfaces and classes representing Abstract Data Types
(ADTs), originating with the Java Collection interface. These classes
each consist of an API containing the methods of the class, but are
relatively independent of the implementations. The prototype, called
JVALL (Java Visual Automated Linked List), was developed as an
extension of the Java LinkedList class. The approach used here is
similar to that used by Jeliot [5,6], where a user-written Java program
is submitted to the Jeliot server, which produces an animation of
operations that the submitted code performs on a data type. Jeliot
provides animations for all Java primitive types, arrays, stacks, and
queues. The IDSL Visualizer [7] also uses this approach by providing
the application programmer interface (API) for abstract data types
and automatically generating visualizations. The APIs of JDSL,
however, do not conform to Java Collection Class APIs.

Many researchers have conducted studies of the effectiveness of
visualizations for the learning of algorithms and data structures.
These studies have produced mixed results and have led some to
question the validity of visualization as an aid to learning in this
context. A recent meta-study [8] examines many earlier studies and
identifies factors that the earlier studies have empirically agreed lead

to successful visualizations. We have utilized these results in the
design of JVALL.

The following are four features that we believe are key to successful
visualizations and that we have attempted to provide in this
prototype:

1. Ease of Use

In the meta-study of algorithm visualization
effectiveness, it is stated that among the reasons
visualization software has not been used by faculty
beyond its developers are that they do not have time to
learn it, that they feel it will take time from other class
activities, and that they believe it will require too much
time and effort to create visualizations [8]. It was thus a
primary objective here to make the use of visualizations
as easy as possible for both student and instructor,
avoiding the need to learn new syntax or make
extensive changes in pedagogy.

2. Flexibility

Just as students have a variety of ways of learning, so
too do instructors have a variety of preferred teaching
methods. One drawback of many instructional tools is
that they are not widely used because they do not match
the preferred pedagogical approach of many
instructors. JVALL was designed to provide flexibility
in its use, not restricting the learner or the instructor in
the ways it can be used. The goal is to provide a tool
that can easily fit into any learning framework rather
than a package that is self-contained for a pre-specified
use.

3. Platform Independence

In order to support a wide flexibility in the way a
visualization is used, it must be supported in a variety
of environments. The platform independence provided
by Java minimizes the concerns for availability of an
appropriate platform.

4. Interactive

The meta-study concludes that "the most successful
educational uses of algorithm visualization technology
are those in which the technology is used as a vehicle
for actively engaging students in the process of learning
algorithms [8]." It is therefore important that JVALL
support student interaction, both with the algorithm and
with the visualization itself. Student interaction with
the execution of the algorithm has been noted as an
important factor in successful visualization, not only by
the meta-study, but also by others [9] [10]. Effective
tools for visualization control include selection of
color, user-controlled speed [11], and the ability to
reverse the algorithm [12].

2. Three Aspects of Abstract Data Types

There are three aspects of ADTs that are important for students to
learn. Textbooks and instructors have differing views on the
emphasis and order for presenting these aspects, but there is
consensus that it is important for students to gain an understanding of
all three.The first is the conceptual view of the ADT. In the
Object-Oriented framework, this is represented by the API definition
of the methods, including the way each method is called, the
specification of the parameters of each call, and the specification of
the result of a call, including return values and its impact on the ADT
instance itself.

A second important aspect of ADTs is their application. This requires
an understanding of the ways an ADT is used, in what situations its
use is advisable, and how it is used effectively in those situations.

The final aspect is the implementation. This includes the data
structures used to represent the ADT, the algorithms used to
implement its methods, and techniques for careful space and time
analysis of those algorithms.

JVALL has been developed to support all three of these aspects of
learning an ADT, in particular, the list ADT as represented by the
Java LinkedList class. The JVALL class has an API that is identical

to that of the Java LinkedList class, thus supporting the learning of
the conceptual view represented by this Java collection class. Since
JVALL can be used in any context where the LinkedList class is used,
it provides an efficient way to understand applications of the ADT
through visualization, whether the application is student-written or
provided by the instructor. Finally JVALL provides views of multiple
implementations of the ADT, giving the student a means to carefully
examine the implementation visually. In particular, when used with a
source-level debugger, JVALL can enhance the student’s ability to
perform time and space analysis.

A

3. JVALL Overview and Objectives

Bergin et al. [13] applied the model-view-controller framework as a
design paradigm for visualizations. In Figure 1, we show an overview
of JIVALL based on this framework.

@ Figure 1. Model-view-controller 1

Controller Model View
(4pp11gah on Visualization of
using linked ¢ " JVALL «—» implementation
lists)
[

Typical to the MVC framework, TVALL supports multiple
controllers and multiple views through a single model, the linked list
ADT. A controller may be any class that uses the linked list ADT. It
may be a specially designed interactive instructional module, a class
implementing another ADT that uses the linked list such as a stack,
or any other application, complex or simple, that uses one or more
linked lists. The controller may interact with a user, such as the
student or the instructor, it may run under file control, or it may be an

application with no input at all.

There are also multiple views that represent multiple implementations
of the ADT. In the current system, only two implementation views
are provided for the linked list ADT, the linear, singly-linked and the
circular, singly linked implementations. Others will be provided in
the future. The user also interacts with each view, controlling the
visualization’s color scheme, speed, and direction (through an
undo/redo facility).

The JVALL class itself is the LinkedList model that implements the
underlying Java collection class and interfaces with the multiple
controllers and views.

The objective of this project is to produce a linked list visualization
tool that provides a prototype for further development and has the
following capabilities:

® Provides visualization of multiple ADT implementations.
As stated above, two implementations are provided and others
can be easily added.

® Shows linked list operations with user-controlled animations.
Operations are animated at a speed that is controlled by the
user and allows detailed observation of the construction and
modification of nodes. In addition, the user determines which
implementation is viewed.

@ Provides visualization for any Java program that uses the
LinkedList class.
The JVALL class is an extension of the Java LinkedList class.
Therefore, any program that uses this Java class is very easily
modified to enable visualization of its linked list operations.

® Supports visualization of both Java applets and applications.

The tool is easily applied in both of these Java run-time

environments by a parameter passed when the linked list is

constructed.

')

4. A Simple Example

We introduce the full capabilities of JVALL by providing a simple

example of a Java application that constructs a linked list and

performs a few very simple operations. The Java source code to this

example is found in Figure 2.

import jvall.Jdvall;
import jvall.JvalllListener;
import java.util.ListIterator;

public class JvallTest implements JvallListener {

public static void main(String[] args) {
Jvall myList = new Jvall (Jvall.STANDALONE) ;
JvallTest myTest = new JvallTest();
myList.addAnimationListener (myTest) ;
myList.addFirst("One");
myTest.waitFordvall () ;
myList.addLast ("Three");
myTest.waitFordvall () ;
myList.add(1l, "Two") ;
myTest.waitFordvall () ;
myList.set (myList.indexOf("Two"}, "TWO");
myTest.waitForJdvall () ;
ListIterator mylterator = myList.listIterator(0);
while (mylIterator.hasNext()) (

System.out.println(myIterator.next());

)

}

public JvallTest() {
this.done = true;
this.status = "Uninitialized";

}

public synchronized void waitForJvall() {
while (!this.done) {
try {
wait();
} catch (Exception e} {}}
}

public synchronized void animationEvent (int ewvent)
if (event == Jvall.ENDED) {
this.done = true;
notify();

}

else if (event == Jvall.RUNNING)
this.done = false;

)

public void statusUpdate(String strStatus) (
this.status = strStatus;

)

private boolean done=true;
private String status;

{

Figure 2. A simple
example program
using JVALL.

The Jvall class (which implements the JVALL ADT) has the same API as
the Java LinkedList class except for the inclusion of a constructor that
takes a single parameter that specifies whether the JVALL will run as a
Java application or an applet. Also, the addAnimationListener method
enables a JvallListener to be attached to the JVALL linked list.

JvallListener is an interface with two methods:

public void AnimationEvent (int event) ;
public void statusUpdate(String strStatus) ;

JvallListener provides communication from the view to the controller with
the model serving as an intermediary. This allows the animation to
communicate with the controller without knowledge of the details of the
controller’s implementation. The two possible event parameters that can
be sent to AnimationEvent are Jvall. ENDED and JvalLRUNNING. These
two int constants indicate that the animation has finished or begun
running. Whenever the status of an animation is changed, the statusUpdate
method is called and the String that appears in the status textfield of the
animation will be the strStatus parameter. In the case of the program in
Figure 2, the instantiation of statusUpdate is

public void statusUpdate(String strStatus) ({
this.status = strStatus;
}

This will set the instance variable status to the String that is returned to
this class by the view. That String will correspond to the String that
appears in the TextField labeled "Animation Status” in the animation view
window.

In the example in Figure 2, JvallTest is also a JvallListener. It sets its
instance variable done whenever the running state of the animation
changes. It also keeps the latest status of the animation in instance variable
status.

The method waitForJvall waits for a notification that a visualization that
is active has been completed.

public synchronized void waitForJdvall ()
while (!this.done) {
try |
wait();
} catch (Exception e) {}}
}

This is called following every JVALL method call so that the program will
not proceed until the animation process is completed.

Three nodes are added to the JVALL linked list, one is changed, and then
an iterator is created that iterates through the list, printing each node. This
is accomplished in the main program through the calls

myList.addFirst("One") ;

myTest .waitFordvall () ;

myList.addLast ("Three") ;
myTest.waitForJdvall () ;
myList.add (1, "Two") ;

myTest .waitForJvall() ;

myList.set (myList.indexOQf ("Two"), "TWO") ;

myTest .waitFordvall () ;

The interspersed waitForJvall() calls require the program to wait for the
completion of the visualization before proceeding to the next operation.
The output produced by the program is

One
TWO
Three

This is printed by the statements

ListIterator myIterator = myList.listIterator(0);
while (myIterator.hasNext()) {
System.out.println (myIterator.next());

Figures 3, 4, 5, and 6 show the progression of visualizations of the list
after each operation. Not viewable in these figures are the detailed
animation of the search through the list and the modification of links. For

example, during the execution of the method call

myList.set (myList.indexOf ("Two") , "TWO") ;

a small arrow will trace the search through the linked list for the node with
contents "Two" and, when it is found, will change the contents to "TWO."

Figure 4. IVALL
visualization after
second add.

Figure 5. JVALL
visualization after
third add.

Edl image Full size

Figure 6. JVALL
visualization after
change.

2 - IR

image

5. JVALL Features
Figures 7, 8, and 9 illustrate some of the important features of
JVALL.

Visualization

The center portion of the display shows the linked list
and its operations are animated there. Figure 8
illustrates a snapshot of an animated addition of a node
in progress.

Animation Status Report
The current status of the animation is displayed in the
area circled in orange in Figure 7.

Undo/Redo Capability

The undo and redo buttons, circled in black in Figure 7,
permit the user to rewind and review the visualization
steps.

File Load and Save

The buttons circled in green in Figure 7 are used to
permit the user to save the current visual linked list and
to retrieve a visual linked list that was saved
previously. While this feature presently saves and reads
the nodes as a text file, a future improvement to this
software will permit any serialized objects to be saved
and restored,

Color Selection

The user controls the colors of all components of the
display through use of the panel circled in blue in
Figure 7.

Speed Control

The speed control slide bar allows the user to control
the speed of the animation and is circled in red in
Figure 7.

Multiple Implementation Views

This selection is circled in yellow in Figure 7. The
present implementation includes only two
implementations for the linked list, but future
enhancements will provide additional options. Figure 9
shows the circular linked list view of the list shown in
Figure 6.

. Figure 7. Empty
JVALL Window
vith Feature areas

" Figure 8. Snapshot
uring animation of
add method
execution.

Full size

. Figure 9. Circular
' Linked List
Implementation
view.

Bfl image Full size

&

6. General Interactive Linked List Controller

The distribution of the JIVALL package includes one controller
program that is generalized, interactive, and permits the user to
perform linked list operations and watch their results through a
graphical user interface. The controller window appears directly
below the JVALL window as shown in Figure 10.

Figure 10. JVALL
window with
General Interactive
Controller.

Full size

image

The user can type into the value and position text boxes of this
controller window to insert nodes into the specified position of the
linked list. In standalone mode, a user has the option of opening text
file, loading it into the linked list and continuing with the normal
linked list operations such as insert, delete, and replace. Each time a
button is clicked within the controller’s window, JVALL receives a
request from the controller and displays the animation accordingly.
When the user requests an invalid operation such as inserting or
deleting from a position that does not exist, JVALL will throw an
appropriate exception. The controller will then catch that exception
and report the problem, indicating to the user valid position choices.

An example of this is shown in Figure 11. In Figure 11a, the user has
selected position 4 to insert a new node. But the only valid positions
for insertion would be 0, 1, 2, and 3. Figure 11b shows the resulting
view. Here the appropriate message is reported for both the animation
status and in the status textbox of the controller. These correspond
because the controller program simply reports the status parameter

that JVALL returns to it.

Figure 11a. Before
Insert Position
button pressed.

Full size

Figure 11b. After
Insert Position
button pressed.

Bl image Full size
image

BRI YR

&

7. Educational Uses of JVALL

JVALL can be used in at least three possible ways in an educational
environment. The visualization software can be used in tutorial
settings, either for classroom demonstrations or for on-line tutorials.
JVALL can also be used for active student learning via laboratory
and homework activities. Finally, JVALL, when used in concert with
a source-level debugger, provides an effective debugging tool for
students working on projects.

r

7.1 Tutorials

The classical application of visualizations for learning data structures
and algorithms is through enhancement of instructor-led
demonstrations within the classroom. Two features of JVALL make
it very appropriate and flexible in such a setting.

First, since any user-provided controller program can drive a JVALL
visualization, the instructor can use the General Interactive Linked
List Controller or design her own controller as appropriate for the
instructional objectives.

The second JVALL feature that supports in-class demonstrations is
the ability to load into JVALL a previously saved list from a file.
This enables the instructor to use examples on complex list structures
without the overhead of spending class time building the list.

In an on-line learning environment, JVALL can be controlled by
tutorial software with appropriate visualizations occurring at
specified places in the process. Such tutorials may or may not be
interactive as the author of the controller determines. When the
learning is not only on-line, but also distance learning, the use of the
applet mode of JVALL is particularly helpful.

A

7.2 Active Student Learning

JVALL can be used as a tool to generate student activities that will
enhance learning. Laboratory activities might include use of the
General Interactive Linked List controller to have students
manipulate linked lists and observe each operation, have students
count events as they observe them to analyze the run-time for an
algorithm, have students make comparisons of the different linked list
models, and using JVALL to visualize the operations on a class,
either student-written or instructor-provided, that uses the Java
LinkedList class.

As an example of this, a Stack class has been built using the JVALL
implementation of the Java LinkedList class and an interactive
controller has been written to generate any possible operation on that
class. A student might learn about the Stack class through JTVALL
visualization of the stack operations. Figure 12 shows a snapshot of
this activity.

ink to the authors’
Linked List Stack applet.

R

7.3 Debugging Student Programs

JVALL is particularly useful in assisting students while they debug
programs that use the Java LinkedList class. In addition to the
visualizations of the LinkedList operations, JVALL, in partnership
with a source-level debugger, is an especially powerful tool for
discovering logic errors. With this combination, students can step
through the code with the debugger and watch the results of
operations evolve within the JVALL window. This is a significant
improvement over the use of the debugger alone because the student
is not forced to follow a chain of references to realize the structure of
a list.

&

8. Conclusions and Future Work

A number of animation strategies have been developed and
implemented for use as teaching and learning tools. The qualities that
an effective algorithm visualization package should possess have
been classified by Cordova in [12]. Below, we apply these five
criteria to JVALL.

M Flexibility. JVALL is flexible in the sense that it is capable of
visualizing the execution of any program that uses the Java
LinkedList class. JVALL can be used and represented in
different ways to meet the needs of the controller program.
JVALL can also animate applets as well as standalone
applications.

B Integration of algorithm text and visualization. JVALL
provides dynamic textual updates of the animation stages to
the user and to the controller program. Because JVALL was
built upon the Java LinkedList class and is independent of
implementation, it is unable to provide code display of the
linked list.

B Ease of modification. All the components of JVALL are fully

customizable. JVALL comes with a full color control panel
for customizing all aspects of the animation display. The
linked list nodes, pointers, arrows, traverse arrow, and
background colors can be changed to suit the user’s taste.
Execution control features. JVALL’s speed control and

multiple undo’s and redo’s give the user the ability to rewind
and adjust the speed of the animation to aid learning at a

user’s pace.

Support for animation of algorithms supplied by the user.
As illustrated in the program in Figure 2, a user can generate a
visualization using any controller program that utilizes the
Java LinkedList class.

According to these criteria, JVALL is a very effective tool for
enhancing the learning of the algorithms and applications of linked

lists.

Future enhancements to JVALL include the implementation of N Link [N—
additional linked list models such as doubly linked and header lists, link to the authors’

In addition, this same process will be used to provide animated VAL WED pite for

visualizations of other Java Collection classes such as ArrayList and

downloading source code,
general controllers, and

TreeMap. documentation,

&

9. Acknowledgments

This work was supported in part by the National Science Foundation
Research Experiences for Undergraduates program through grant
#EIA-0097464.

EY

10. References
[1] Brown, M. Exploring algorithms using Balsa-II. IEEE Computer
12,5(1988), 14-36.

(2] Stasko, J.T. TANGO: A framework and system for algorithm
animation. [EEE Computer 23,9(1990), 27-39.

[3] Naps, T.L. and Bressler, E. A multi-windowed environment for
simultaneous visualization of related algorithms on the World Wide
Web. SIGCSE Bulletin 30,1(1998), 277-281.

[4] Pierson, W.C. and Rodger, S.H. Web-based animation of data
structures using JAWAA. SIGCSE Bulletin 30,1(1998), 267-271.

[5] Hundhausen, C.D., Douglas, S.A., and Stasko, J.T. A meta-study
of algorithm visualization effectiveness. Journal of Visual Languages
and Computing, to appear.

[6] Haajanen, J., Pesonius, M., Sutinen, E., Tarhio, J., Teridsvirta, T.,
and Vanninen, P. Animation of user algorithms on the web.

Proceedings of the 13" IEEE International Symposium on Visual
Languages, IEEE Computer Society Press, 1997, 360-367.

[7] Lattu, M., Tarhio, J., and Meisalo, V. How a visualization tool
can be used--evaluating a tool in a research & development project.
12th Workshop of the Psychology of Programming Interest Group,
April 2000.

[8] Baker, R.S., Boilen, M., Goodrich, M.T., Tamassia, R., and
Stivel, B.A. Testers and visualizers for teaching data structures.
SIGCSE Bulletin 31,1(1999), 261-265.

[9] R6Bling, G., Schiiler, M., and Freisleben, B. The ANIMAL
algorithm animation tool. 5 Annual Conference on Innovation and
Technology in Computer Science Education (ITiCSE), 2000, 37-40.

[10] Crescenzi, P., Demetrescu, C., Finocchi, L., and Petreschi, R.
Reversible Execution and Visualization of Programs with
LEONARDO. Journal of Visual Languages and Computing,
11,2(2000),125-150.

[11] Bergin, J., Brodlie, K., Goldweber, M., Jiménez-Peris, R., Khuri,
S., Patifio-Martinez, M., McNally, M., Naps, T., Rodger, and Wilson,
J. An overview of visualization: its use and design. Proceedings of
the ACM SIGCSE/SIGCUE Conference on Integrating Technology
into Computer Science Education, 1996, 192-200.

[12] Cordova, J. A comparative evaluation of web-based al gorithm
visualization systems for computer science education, Journal of
Computing in Small Colleges 14,3 (1999), 72-77.

“ e s ohe o ofe e ok e ok ok End of Documcnt e s o o e e ke e ok ok

IMEJ multimedia team member assigned to this paper Yue-Ling Wong

