
3. JVALL OveNiew ad

A Linked List Prototype for tbe Visusl Representation of
Abstract Data Typ€s
HetberlL. Derchem, Hope Colkse
Ry at McF all, H op e C o I I e I e
Ngozi Uti, Noft hern KentuckJ Universiv

Linked Lisr confolb Abstract
7 Educarioml Uses of Visualization is an important tool for leaming abstract data types.

l]+i-t-,_,- one approach ro lhis is to expand rhe ctrss oia dara rlpe to ;itude
;'ji:i:i:1i"""", \isualizarion of all operarions. rhus auromarically seneratins

Leuhins visualizations in prograns that use the data type. A prototype of this
?.3Debugsiis studeot approach applied to the Java Linkedlist class is described in this

L c",iji1c,1if;,d 
paper. Also de.cribed are seneral puaose controllers ior rhis procers.- 

i;i;;;;;i-^ in,ructjons lbr user genera(ion of more spec, alzed controllers, and
9. Ackoowledgnenrs ways this tool can be used in an educational setting.

1. Introduction
Printe! friendly vdsion The use of visualization to enhance learning of data stfltctures and

algorithms in computer scienc€ has been populd for many years.
Because of the numbe( of continuing projects, a progression of
packages have developed, prominent among rhem are BALSA [l],
Tango [2], GAICS [3], and JAWAA [4].In addition ro these projects,
many oders have developed software to aid learning through
visualization and animation of data sructurcs and algorithms. Early
work produced scripted algorithm animations. Later these evolved to
provide user control. Most rec€nt activity has been hosted on the
web.

This paper describes a project to develop a visualization of the
algorithms for implementing methods of the Java ZinkedList clsiss.
This visualization will serve as a prototype for visualization of any
Java Collection Class. The Java Collection classes consist ofa
hierarchy of interfaces and classes representing Abs$acl Data Types
(ADT', originating with the Java Collection inte ace. These classes
each consist of an API containing the methods of the class, but are
relatively independent of the implementations. The prolotype, called
JVALL (Java Visual Automared Linked List), was developed as an
extension of the Java atr*ddl,irt class. The approach used here is
similar to that used by Jeliot [5,6], where a user-written Java program
is submitted to the Jeliot server. which Droduces an animation of
operations that the submitted code performs on a daia tlpe. Jeliot
provides aninations for all Java primitive typ€s, arrays, stacks, and
queues. The JDSL Visualizer [7] also uses this approach by poviding
the application programmer interface (API) for abstract data types
and automatically generating visualizations. The APIS of JDSL,
however, do not confom to Java Collertion Class APls.

Many resealchers have conducted studies of the effectiveness of
visualizations for the leaming of algoritlns and data structures.
These studies have produced mixed results and have led some to
question the validity of visualization as an aid to leaming in this
context. A recent meta-study I8l exanines many earlier studies and
identifies factors that the earlier studies have emDiricallv aereed lead



to successful visualizations. We have utilized these results in the
design of JVALL.

The following are four features that we believe are key to successful
visualizations and that we have attempted to provide in this
protot)?el

l. Ease of Use
In rhe mela slud) of algonrllm visualization
effectiveness, it is stated that among the reasons
visualizaaion software has not been used by faculty
beyond its developers are that they do not have time to
leam it, that they feel it will take time fron other class
activities, and that they believ€ it will require too much
time and effort to create visualizations [8]. It was thus a
primary objective here to mate the use of visualizations
as easy as possible for both student and instructor,
avoiding the need to leam new syntax or make
extensive changes in pedagogy.

2. Flexibility
Just as students have a variety of ways of leaming, so
too do instucrors have a variety of prefened teaching
methods. One drawback of many insfuctional tools is
lhat they are not widely used because they do not match
the prefened pedagogical approach of many
inshuctors. JVALL was designed to provide flexibility
in its use, not restricting the learner or the instructor in
the ways i! can be used, The goal is to provide a tool
that can easily fit inlo any learning framework rather
than a package that i$ self-contained for a pre-specified

3. Plaform Independence
In order to support a wide flexibility in th€ way a
visualization is used, it must be supported in i variety
of environmenls. The platform indep€ndence provided
by Java minimizes the concems for availability ofan
appropriate platform.

4. Interactive
The meta-study concludes that "the most successful
educational uses of algorithm visualization technology
are those in which the technology is used as a vehicle
for actively engaging students in the process of learning
algorithms [8]." lt is therefore important that JVAIL
suppo( student interaction, both with the algorithn and
with the visualization itselt Student interaction with
the exerution of the algorithm has been noted as an
impo{ant factor in successful visualization, not only by
the meta-study, but also by oth€rs t9l Il0l. Effective
tools for visualization control include selection of
color, useFcontrolled speed ll, and the ability to
reverse the algorithm [12].

a



2. Three Aspects of Abstract Data Typ€s
There are three aspects of ADTS that are important for students to
leam. Textbooks and instuctors have differing views on the
emphasis and order for presenting these aspects, but there is
consensus that it is important for students to gain an undentanding of
all three.The tust is the conceptual view of the ADT. In the
Object-Oriented framework, this is reprcsented by the API definition
of the methods, including the way each method is called, the
specification of the parameters of each call, and the specification of
the rcsult of a call, including retum values and its impact on the ADT
instance itself.

A second important aspect of ADTS is their application. This requires
an understanding of the ways an ADT is used, in what situations its
use is advisable, and how it is used effectively in those situations.

The final aspect is the implementation. This includes the data
structures used to represent the ADT, the algorithms used to
implement its methods, and techniques for careful space and time
analysis of those algorithms.

JVALL has been developed to support all three of these aspects of
learning an ADT, in particular, the list ADT as represented by the
Java ri*?dlirt class. The JVALL class has an API that is identical
to that of lhe la\a Li kedList class, thus supporting the learning of
the codceptual view represented by this Java collectiod class, Since
JVALL can be used in any context where the rrnledlirt class is used,
it provides an efficient way to understand applications of the ADT
through visualization, whether the application is student-written or
provided by the instructor. Finally JVALL providd views ofmultiple
implementations ofthe ADT, giving the student a means to ca.efully
examine the implementation visually. In pafticuld, when used with a
source-level debugger, JVAIL can enhance the student's ability to
perform time and space analysis,

a

3. JVALL Overview and Objectives
Bergin et al. [13] applied the model-view-controller ftamework as a
design paradigm for visualizations. In Figure l, we show an overview
of JVALL based on this framework.



Figure 1. Model-view-controller ,

Typical to the MVC framework, JVALL supports multiple
controllers and multiple views tkough a single model, the linked list
ADT. A conEoller may be any class that uses the linked list ADT. It
may be r specially designed interactive instnctional module, a class
implementing another ADT that uses the linked list such as a stack,
or any other application, complex or simple, that uses one or more
linked lisis. The contoller may interact with a user, such as the
student or the ins$uctor, it may run under file control, or it may be an
application with no input at all.

There arc also multiple views that represent multiple implementations
of the ADT, In the cunent system, only two implementation views
arc provided for the linked lisi ADT, the linear, singly-linked and the
circuld, singly linked implementations. Othe6 will be provided in
the future. The user also interacb with each view, conrolling the
visualizaaion's color schene, speed, and dir€ction (through an
undo/redo facility).

The JVALL class itself is tbe Lint?drrrt model that implements the
underlying Java collection class and interfaces with the multiple
controllers and views,

The objective of this project is to produce a linlcd lisi visualization
tool that provides a prototype for fifther development and has the
lollowing capabilitiesl

a hovides visualization of multiple ADT implem€ntations.
As stated above, two implementations are provided and others
can be easily added.

a Shows linked list operations with user-con[oll€d animalions.
Operations arc animated at a speed that is consolled by ihe
user and allows detailed obse ation ofthe construction and
modification of nodes. In addition, the user determines which
implementation is viewed.

a Provides visualization for any Java pmgram .hat uses the
LinkedList class.
The JVALL class is an €xtension of the Java trin*ddLirt class.
Therefore, any pro$am that uses this Java class is very easily
modified to enable visualization of its linked list operatlons.

View
Visualization of
implemcntation



a Supports visualization of both Java applets and applications.
The tool is easily applied in both of tie6e Java n-time
envircnments by a paftmeter pass€d when the linked liit is

I

4. A Simplc Example
We intmduc€ the firl capabilities of IVALL by plovidhg a simple
example of a Jsva application that constructs a linked list and
performs a few very simple operations, The Java souce code to this
example is found in Figure 2.

X'tgure 2. A simple
examPle ProSram

irpolt jva11.Jva11, using JVAIL
inE)olE Jva11.,tva11!13!ener,
irport Java.utll.!16tItelator;

pubLlc cLa33 JvallTeBt tlplftntg,rvalltrlEt€n€! {
publi.c Btatlc voiil Mtn(etllnsll arsB) r

,lvalL r!/Ll8t = nes Jvall (ltvall . STANDAIONE ) ;
Jvalll€Bt !!r'le€t = new JvallTe8t0 '
hyl,13t . adclanlGtlonllst.n.r (4aT65t ) ,
nyr.13r. adi|!i!8r ('on€') I
Fltrest.w.itFodv.Il ( ) ;
ny',l3r. addLast ('Thlee' ) ,
!u/Te8t. s.ltFolJvall ( ) ;
iyLi6r. add(1, 'ewo ' ) I
!l!.t€Bt . u.i lFo!,tv.U ( ) i
nyLl€t. a6c (fryLlat, lnd
$!are3t , wal tFolJvall ( ) ;
Llatlteracor nylteraco! - !t/L13t.113tIt€lato!(0) ;
whlt€ (rvl t€lator. ha8Next ( ) ) {

system. out , pllntln (nyltsrato!, next o ) ,
l

l

public ,tvallfest{) t
th16,don€;  t f l€ ,
thi5.ElaluB = "ltnini tla1iz6d" ;

)

pubtlc 6y4chlonized void watlFolwatt(
whi l€  ( r  th iE.don€) {

) calch (Exc€puon €) {))
)

pub11c synchlonlzed vold slmtlonEvdt (lnt w€nt) {
i! (went == JVeU.END!D) (

th l6.dobe = tnei

)
e15e it (eveDt == wall,RUNMrIG)

th16,dode = fal6e;
l

public void sratuslDdaEe(stling EElstatus) {
th i5 .E ta lus  =  s ! !s !a !us ,

)

privale boolea done=tsne;

)



The Jvall class (which implements the JVALL ADT) has the same API as
rhe la\a LinkedList cl^ss except for the inclusion of a constructor that
takes a single parameter that specifies whether the JVALL will run as a
Java application or an applet. Also, the a(UAninutionListener mEI}]'od
ei bles a J (,allListener ta be attached to the JVALL linked list.
JvaLlListefter is an ktefiace with two nethods:

public void AnimationEvents ( int evenE);
p u b - i c  v o i d  s - a - u s L p d a L e ( S t r i n g  s t r s E a l u s )  ;

JyallListener Vo.rides communication from the view to the controller with
the model serving as an intermediary. This allows the animaiion to
communicate with the controller without knowledge of the details of the
controller's implementation- The two possible event parameters that can
be sent to AnimationB/enr are Jvall.ENDED and Jvall.RUNNING. These
two int constants indicate that the animation has finished or begun
runoing. Whenever the status of an animation is chanEed, r,|,e statusupdate
method is called and the ,tlrlrg that appears in the status textfield of the
animation will be the.rlr,tidtur parameter. In the case of the program in
Figure 2, the instantiation of statusupdate is

publ ic void statusupdate (  Str ing slrst .atus) {
this,  status = strstatus;

J

This will set the instance viriable status to the String that is retumed to
this class by the view. That Sl/i,i8 will conespond to the Sl/ing that
appeus in the TodFieA labeled "Animation Status" in tbe animation view

In the example in Figure 2, JvallTert is also a JvallUrrener. I! sets its
instance variable done whenever the nning state of the animation
changes.It also keeps the latest status of the animation in instance variable

Tl.'e merhod waitFo vaU waits for a notification that a visualization that
is active has been completed.

publ ic synchronized void waitForJval l  (  )  {
w h i l e  (  ! r h i s . d o n e )  {

wair o ;

]

This is called following every JVALL method call so that the program will
not proceed until the animation process is completed,

Three nodes are added to the JVALL linked list, one is changed, and then
an iterator is cre ed that iterates through the list, printing each node. This
is accomplished in the main Fogram tkough the calls

myrr isr.  addFif  st  ( 'one,,  )  ;
mr4 rs t s  u ,a i  rF . r r r ' : l  I  i \  .

myr, isr.  addlast (  "Three" )  ;
n \4as i  u , , i  t sF^7 . r v i l  I  / l  .

nyl ist .  add(1, "Two' )  ;

myl ist .  seE (rVList .  indexof (  "T\ro "  ) ,  "  TWO" ) ;



m/test . waitForifvall { ) ;

The inte$persed wartForJva[o calls rcquirc the program to wait for the
completion of the visualization b€fore proce€drng to the next operation.
The output Foduced by the program is

TWO
Three

This is plinted by the statomonts

] l ist l terator mylteraEor = nryl i9ts.  l ist l terator (  0),
while (mylteratsor. hasNext ( ) ) {

Systen, out . println (llVIEerabor. next { ) ) ;

Figures 3, 4, 5, and 6 show the progression of visualizations of the list
alter each op€ratron. Not vicwablc in these frgures arc the detailcd
animaiion of thc search thrcugh the list atrd the modifi@tion of 1ink6. For
example, during the ox.cution of the method call

mtd,isl, sel (mylist. indet Of { "Erdo" ) , rrTWO" ) ;

o small arrow will trace thc scarch through tho linked lbt for tt|e nodc with
contents "Two" and, when it is found, will chiogc tho contcnts to "TwO."

Ftgure 3, JVALL
visualization after
fi$t add.

@ror,i,,

8,ro.",.-r



Figue 4. JVAIL
visualization after
second add.

E@r'u.i*

Flgure 5. JVALL
visualization aftei
thhd add.

E@rol, i , ,

Figure 6. JVALL
visualization after
change.

E@ror,i*

t



5. JVAI Featur€s
Figwes 7, 8, and 9 ilushatB soEe of the irlDortant foatures of
JVALL.

Visurlization
Tho center potioD of the display shows the linked list
and its op€rations are animated tberc. Figure 8
illu8trales a snapsho! of an animared addition of a node
in progress.

ADlmaliotr Shtu6 R€port
The cuncnt status of thc animadon is dicplayed in rhe
arca circled in orangc in Figurc 7.

Undo/R€do Cdpabfity
The undo and redo buttions, circled in black in Fi$no ?,
permit the user to rcwhd and rcview the visualization
fieps.

Flle Lotrt atrd Sar€
The buttons circled in gican in Figuo 7 arc us€d to
pcmit the usot to save thc cud€nt visual linkad list aad
to retrieve a visual linked list that was savad
previously. While this foature F€sently saves and rcads
lhe nodes a! a text file, a firure improvcmen! lo this
softwarc will permit atry serializcd-objecE to bc saved
and rostor€d,

Color Selecdon
TIlc user controls thc colors of all comDongnts of the
display lhrough use of tho polcl circlei in bluc in
Figurc ?.

Speed CoDhol
The speed cont|ol slide bar allows the uslf to control
thc spe€d of tho anination and is oircld i! rcd in
Figure 7.

Muldple Impl€ne rtioD Vlews
This sclection k circlcd in yellow in Figure 7. Thc
present implementarion incluil€s only two
implementadoru for rhe linl(.d list, but futur!
enharcemett6 will Fovide .dditional optioss. Figure 9
Bhows the circular liDked lirt view of tho list sho\ln in
Figue 6.



Figur€ 7, Empty
JVALL Window

circled.

E@nor,i""

Figurc 8. Snapshot
during animation of
add method
execution,

E!@ru,i,"

Figure 9. Circular
Linked List
Implementatiod

E@nou,i,"

n$! r!l|.d tcrrrrb|lr rxsrt



a
6. G€rcral Intcractive Llnted Lisl Codroller
The distribution of th€ MLL package includes one controller
program that is generaliz€d, int€ractive, and permits the user to
perform lioked list operations and watch flrci results tbmugh a
gaphical user inlerface. The controller window appears direcdy
below the JVALL window as sho\*,n in Fisue 10.

The user can type into the valur and position text boxes of this
controller window to imert nodes into tho spccificd position of the
linkcd liEt. In stondalone mode, a us€r has thc option of opening text
file, loading it into the linled list .nd continuing with the normal
linkcd list opcrations such as insert, delete, and rcplaca. Each time a
button b clicked within the conholler's window, WALL receives a
rcquest ftom the controller and displays the anim.tion accordingly.
Whon the usor rcquost6 an invalid operation such as inserting or
deletrng ftom a position that does not exist, JVALL will thow an
appropriate exception, The con$olld will then catch that exception
and report the proble6, indicating to thc urrl v6lid position choic€s,

An example of this is shown in Figue I L In Figore 1 la, the uscl has
selected positioD 4 to insert a new nodc. But th! only valid positiong
for insertion would b€ 0, 1, 2, and 3. Figure I lb shows the resulting
view. Herc the appropriate message is reported for both the admation
status and in the status tcxtbox of the coDtrollea. These correspond
because the conholler pao$am simply reporu the status parameter
that WALL retums to it.

Ftgure 10, IVALL

G€neral Interactive
Conholler.

E@rol,l*



trtgue Ua, Beforc
Insert Position
button pr€ss€d.

EErol.i"'
idag.

FIgurc 11b. Aftel
Insort Position
butlon pre$ed.

ENrou'i,o

a

7. Educatiotrsl Use3 ofJVALL
JVALL can b€ used h at le€st thrce possible ways itr an educatiodal
environment. Tte visualizatioD software cao b€ u6ed in tutorial
settitrgs, either for clas$oom alcmonstations or for on-line tutorials.
IVAII can also be used for active sftde le3mi[g via laboralory
and homework activities. Finally, WA]I, when used in corc€.t with
a source-level dcbugger, provides an effective debugging tool for
students working on projects.



a

7.1 Tulorials
The classical application of visualizations for leaminA data stuctures
and algorithms iq through enbancemeorof insFucroFied
demonstrations within the clasyoom. Two featues of JVALL make
rt very appropriate and fleuble in such a seuinC.

First. since any useFprovided conrroller program can drive a JVAIL
visualiralion, the instrucror can use ihe Gnerai lnteractive Linled
List Contoller or design her own consoller as appropriaie for the
instructional objectives.

The second ryALL feature thar supports in-class demonstrations is
the ability to load inro JVALL a previously saved list from a file.
This enables rhe instructor to use examptes on comptex lilt structues
without the overhead ofspendingclass ume buildrng Lhe list.

In an online learning environment, JVALL can be controlled by
rutorial soltware wirh appropriate visualirarions occurring at
specified places in the process. Such tutorials may or may not be
interactive as the author of the controller determines, Whed the
learning is not only odline, but aho distance le$ning, the use of the
applet mode of JVALL is particularly helpful.

I

7.2 Act^'e Student Loarrring
JVALL canbe used as a tool to generate 6tudent activities that will
enhance leam'ng. Laboratory acdvi es mighr include use of the
General Interacdve Linked Lisr conlroller ro have studenE
manipulate linked lists and observe each operation, have students
count events as they observe them to analyze the run-time for an
algorithm, have stud€nts make comparisons of the different linked lisa
nodels, and using JVAIL ro visualize the operarions on a class.
ei&cr student.wntrcn or insEuctor-provided, rhat uses ahe Java
LinkedList class.

As an example of this, a,ttdci class has be€n built usins the JVALL
implenenu on ofrhe Java lJnledl6r class and an inr;active
controller has been written to generate any possible operation on that
class. A student might learn about the Stnck class throush JVALL
visuahzaiion oflhe stack operarions. Figure l2 shows a-snapshot of
this activity.



Figure 12. Bottom
panel showing Stack
Controller.

E@nor,i".

N@eo",,.*r

a

7,3 Debugging Studznt Pro$ams
JVA.LL is particularly usefirl in assisling students while they debug
prcgrams that use the Java linkdrir, class. In addition to the
visualizations of the lrnlrdl,,rt operations, JVALL, in partnership
with a source-level debugger, is an especially powerful tool for
discovering logic enon. With this combination, studenh can step
through the code with the debugger alld watch the results of
operaiions evolve within the JVALL window. This is a significant
improvement over the use of the debugger ilone becauae the student
is not forced to follow a chain of referenc$ to realize the sfiucture of
a t$!

I

8. Concluriono and tr'uturc Work
A number of animation strat€gies have been developed and
implcmented for use as teaching and learning tools. The qualities that
an effective algorithm visualization packeg€ should poss€ss have
been classifie-d by Cordova in [l2]. Below, we apply these five
c teria to JVALL.

I Flexibility. WAIL is flexible in the sense that it is capable of
visualizing the execution of any program that uses the Java
tru*ddtrit clais. JVALL can be used and represented in
different ways ao meet the needs of the controller proglam.
JVALL can also animate applets as well as standalone
applications.
Integraalon of algorithm text and visualization. JVALL
Fovides dynamic textual updates of the animation stages to
the user alld to the con8oller progmm. Because JVAIL was
built upon the Java Zr"*edLrt class and is independent of
implementation, it is unable to provide code display of the
linked list.
Ease of modiffcation. All the components of WALL are fullyt



customizable. JVALL comes with a full color conrol panel
for customizing all ,spects of the animaiion display. The
liol(ed list nodes, pointers, turows, tsavene anow, and
background colors can b€ chaDged to suit the us€r s rasle.
A!€cution control fesirres. IVALL'S speed control and
multiple undo's and redo's give the user the ability to rew;nd
and adjust rhe speed of the animation to aid leamGg ar a

Supporl for animation of algorilhms supplied by the us€r.
As illustrated in the progarD in Figure 2, a user can generale a
visudrrzauon usrng any contsoller progfam that uLilizes rhe
I a\n LinkedList cl3iss.

According ro rhese cri(eria. JVALL is a very effecLive tool lor
enhancing rhe leaming ofthe algori$ms and applcauons of link€d

FutLrre enhancements to JVALL include rhe inplementation of
additional linked list models such as doubly linled and header lis(s.
In addition, this same process will be used to provide animated
visualizations of other Java Collection classes such a s AtayList and
TreeMap.

a

9. Acknowledgmetrts
This *ork w65 5uppsned 'n pan by rhe National Science Foundatron
Research Experiences for Undergaduares program rhrough granl
#EIA-0097464-

A

10. Refer€nces
[1]Brown- M. Exploring algorilhms using BatsaJL IEEE Compdel
12,5( 1988),  l4-36.

[2] Stasko, J.T. TANGO: A ftamework and system for algorithm
animation. IEEE Comp ter 23,9(1990),27 -3i.

[3] Naps, T.L. and Bressler, E. A mulri-windowed environmenr for
simultaneous visualizarion of related algorithms on the World Wide
Web. SIGCSE Bu enn 3O,l(1998), 271 -28r.

[4] Pierson, W.C. and Rodger, S.H. Web-based animation of data
strucnues using JAWAA. SIGCSE Bulletin 30,1(1998), 267-27 L

[5_] Hundhausen, C.D., Douglas, S.A., and Stasko, J.T. A meta-study
of algorithm visualization efie.tivetjfJss. Joumal ofViutjl tan?uager
and computinS, to appear.

t6l Haajalen, J., Pesonius, M., Sutinen, E., Tarhio, J., Terasvirta, T.,
and Vanninen, P. Animation of user algorithms on the web.
Proceedings of the lln IEEE Intematiomt Synposivm on Visual
Langwses, IEBE Cotr\pt)ter Society Press, 1997, 360-367.

I

I

Wao*t"^or

doenlordiq souce code,



[7] Latlu, M., Tarhio, J., and Meisalo, V. How a visualization tool
can- b€ :rsed--evalualing a tool in a rcsearch & development projecl
| 2dr ,workshop of the Psychology of ftogra]nming lit".est i;r6up.
AD.il2m0.

Jq nater, n.S., Aoitn, lt., coodrich, M.T., Tamassia, R.. and
Slivel. B.A Testers atrd visualizers for t€aching dala structures.
SIGCSE Bulletin 3L,ttl99), 26t-265.

[9] RoBling, G., Schiiler, M., and Freisleberl B. The ANIMAL
algorithm adimation tool. 56 Annual Conference on Innovstion and
Technology in Compurer Science Education (niCSE) ,20N,37-40.

[0] Crcscenzi, P., Demetres€u, C., Finoc.hi, I., and petreschi, R.
Reveisible Bxecution and Visualization ofprcsraltrs wilh
I+o_\!!P9: lourylat ofvisuat lansuases aA Conpwins,
r 1,2(2000.125-150.

U 1l Bergin, J., Brcdlie, K,, coldweber, M' Jimdncz-peris, R., Khuri,
S.. ?atiffo-Madnez. M., McNally. M., Naps,T.. Rodger, and Witson,
J: At 9yg_"_i:y -oJ $f4yqtion: ir usc and design. pioceedursr o/
rhc ACM SIGCSAyCCUE Confercnc. oh Inrcirutins Tech ;fogy
hb Amputer ScicrDe Educarioh, t996, t9Z-2O0.

u2l Cordova, J. A comlffative evaluation of web-basrd algorirhm
visualization systemslor computd dcience cducation, Jolr;al o/
Conputing in SnaU Colleges 14,3 (t999),72"7j .

tl **,r,r*,r,*,r,* * gn4 ol po"onront r*lN.r.,r,r,,ri!*,1

IME' nuldnc.lia t m n Inbd sligred b ttis paper yue-Ling Wong


