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The discrete hw norm with weight function f is defined by




B

70

The measurement of central tendency associated with this norm is found by

minimizing the function defined by

M
¥ ~ Al
be) = llo - ell, , = A\Ww £y, - QNV .

The minimizing value of ¢, which we call E(x) (the expected value of x),
is found by setting the first derivative of ¢ with respect to ¢ equal to
zero and solving the resulting equation for ¢* to obtain
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We have used the fact that 2 %w = 1, that is, the sum of the probabilities
is 1. This measurement is well known as the arithmetic mean or expected
value of the random variable. The corresponding measurement of dispersion

is the error of this expected value, given by

M
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which is the standard deviation of the random variable.

The discrete NH norm with weight function f is defined by
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We show that the median is the measurement of central tendency associated
with this norm. For ease of notation we define S(a,b) = {2 _R& € (asb)}
with similar definitions for semi-open intervals. If m is the median of

the random variable defined by x and f, and € is any positive number, then

¢(m + e) - ¢(m) =l - (m + mv__HLn. -l - S__HLQ
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But for x in the interval (m, m + €],
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Therefore,
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where the last inequality follows from the definition of the median. A
similar argument can be used to show that ¢(m - €) - ¢(m) > 0. Hence, m
is a minimum of ¢ and a measurement of central tendency with respect to
the discrete weighted NH norm. In the case where the median is not one
of the data values, this best approximation is not unique. The corre-
sponding measurement of dispersion is

M
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the mean deviation.
Another common measurement of central tendency is derived from the

discrete L_ norm which is defined by

gl = mase el
© : T
l<isM

In this case we wish to find the value of ¢ which minimizes

[l =wall = Smase’ laus =iel -
o 3 Z
1<7<M

It is easy to determine that the minimizing value must be located midway
between the maximum and minimum values which x can take on, a value known
as the midrange. If we denote the midrange by My the corresponding mea-

surement of dispersion is

[l it ma Moy s il
o 7 i r
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which is half of the range.

We define one final discrete norm by
Y
Nl o = W £il1 - 8wl ,

where
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S(x) =
1 Asfhoe o= 0,
The value of llz - cll is the probability that the random variable is not

msf

equal to ¢, and any value of ¢ which minimizes this is called a mode. The
corresponding measurement of dispersion is the probability that the random

variable is not equal to the mode.

3. Statistics which are Transformations o4 Best Approximations.

A number of measurements of central tendency do not arise directly

as best approximations in some norm, .ut can be found as the transformation

of a best approximation. Such measures are defined as follows.

Choose a norm |l | and a transformation function 6.  Find e¢* such that

KX

c* is the best approximation to 6(x) in the given norm, that is,
leCx) - e*ll < llo(x) - ell for all ¢ € (-=,»),

Then a measurement of central tendency is given by QIHAQ#V.
If the discrete hm norm is chosen, then the measurement of central

tendency is
M
-1
o1 2 700, -
1=1

The geometric mean, harmonic mean, and root-mean-square are examples of
this type of measurement when 6(z)equals log x, 1/x, and %2, respectively,

and the data values x, are such that the appropriate function 6 is defined.

4. Continuows Random Varlables .

The above results can be extended to continuous random variables by
replacing the discrete norms by the corresponding continuous norms. We
now assume that we have a continuous random variable with probability
density function f(x). Therefore, f is such that \Ws flx)dx = 1 and
Hle) >0 Fon altliz.

The best approximation in the continuous L, norm with weight function

2
f is the constant ¢ which minimizes
% 1./2

() = llz - el = flx)(x - e)2dx( .
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By differentiation, the minimum of ¢ is found to be
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This value of ¢* is the expectation of a continuous random variable with
probability density function f. The corresponding measurement of disper-
sion is
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the square root of the variance of the random variable.
If we consider the continuous bH norm with weight function f, then,

since f is always nonnegative, we have

o(e) =llx - m__HLc = ,\Mo flx) Iz - elde

*
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Setting ¢'(e) to zero, we find that ¢ is minimized when %WS e = L2y
that is, at that value of ¢ for which the probability is exactly one-half
that < ¢. This is the natural extension of the median to a continuous
distribution.

Unless f(x) is zero everywhere outside of some bounded interval, there
is no continuous extension of the midrange. If f is zero outside the in-
terval (a,b) and positive somewhere in every neighborhood of a and b,

then the continuous L _ norm defined by



¢(e) =lle -~ el = sup lz - cl
a<x<b 2
has as its minimizing value and measurement of central tendency

e* = a + b)/2

which is the middle value of the interval in which f is non-zero. The

corresponding measurement of dispersion is
gile*) = (b - a)/2 .

The continuous extension of the mode is found by minimizing

¢$(e) = lle - nzsu% =1 - (NM Flxisle)de =" =“fle)

where ¢ is the Dirac delta function ([2], P. 6). The function ¢ is mini-
mized at those values where f attains its maximum value. If my is such a

value, then the corresponding measurement of dispersion is 1 - %Asov.
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1975 NATIONAL MEETING IN KALAMAZ00

There is still time for local chapters to be making plans for the
national meeting at Western Michigan University in Kalamazoo, Michigan
in conjunction with the Mathematical Association of America. Plan now
to send your best undergraduate speaker or delegate (or both) to that
meeting. Travel money for one approved speaker or delegate is available
from National. Send requests and proposed papers to:

R. V. Andree

Secretary-Treasurer, Pi Mu Epsilon
601 Elm Avenue, Room 423

The University of Oklahoma

Norman, Oklahoma 73069

GENERALIZING BINARY OPERATIONS

by Dennis C. Smolarshi
St. Lowis Unlversdity

Most day to day calculations take place within the field of real
numbers with the two binary operations of addition and multiplication.
In this field, these two operations are definitionally independent of
one another. However, if we approach binary operations from a different
point of view, e.g. that of recursive formulae, we can develop multipli-
cation from addition by use of the concept of repeated addition. Along
similar lines, we can develop exponentiation from multiplication by re-
peated multiplication. The next logical step would be to try to develop
another binary operation based on repeated exponentiation.

Professor D. F. Borrow of the University of Georgia in the American
Mathematical Monthly, 43 (1936), p. 150, developed some theorems and a
notation for repeated exponentiation. As I is used for summation and II
is used for products, he used F for repeated exponentiation. The develop-
ment of a '"fourth operation" would depend on all the indexed terms of F
being equal, similar to what is necessary in developing multiplication
and exponentiation itself.

In order to clarify relations and notations, let us look at addition,
multiplication, exponentiation, and a projected new fourth operation in

terms of functions and recursive formulae. Let*
filn,m) = n +m
f,tn,m) = nem

and
%wausv S

We know the following:

|

m
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and
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