
An Abstract Window Toolkit Visualizer for Computer Science
Instruction

Josiah DYkstra
DePartment of ComPuter Science

IIoPe College
dYkstra@cs hoDe.edu

Keith SuPPes
Department of Computer Science

Alma College
99suPPes@alma edu

Herbert L. Dershem
Department of Computer Science

HoPe College
dershem@cs.hooe.edu

Abstract
In the toaching and leaming of Computer Scicnce, visualization is an important tool The

goal ofthis prcject is to prcvide a tool that will permit students to visualize the execution

if a program that includis event-driven interfaca components. In particular, it is designed

to viiualize programs written in Java using the Abstact Window Toolkit (AWT)'

When tho pro$am is executed under control of the AWT Visualization softwarc, a visu-

alization window i8 displayad to monitor execution under user control and th€

components produced by the program's execution are displayed concuffently. This

enables the student to view tho code and its coEesponding action and to visualize thc

hierarchy of calls that results.

The paper contains a description of how thg software is used and includes details of its

implementation. ln addition, it provides a comPlete example that demonsffates how this

tool can be used for Compuier Science instruction and progam debugging

L,0 Introduction

For the past two yea$, students in Hope College's Computer Science,REu proglam have

wo*edin the fieid of Program Execution Animation. In 1997, James Vanderhyde created

the Function Visualizer a;a bol to teach recusion. This progam was revised and greatly

expanded in 1998 by D. Erin Parker and Rebecca Weinhold lt was generalized to allow

foi the visuatization of any user-defined function during execution One of the primary

assets of this tool is the manner in which it helps to visualize the function call stack Also

dudng the summer of 199?, James vanderhyde created the Object visualizer, a powerful

tool fir deconstructing a class file into its methods and the objects that those methods

retum. This allows foi an easy visualization of how objects interact between differcnt

methods and classes. We expanded these two programs' adding further rcfinements to

both the user interfaces and the functionality of each.

In addition to the enhancement of thess existing tools' we created our own visualization

program called the Abstract Window Toolkit Visualizer (AWTviz) This progam was

creolted for the purpose of visualizing the execution of an gntire Fogram ln particular'

we wanted to visualize progams that incorporate Java's Abstract Window Toolkit

(AWT). AWTviz provides two views, the Visualization window and User Application

Window. The Visualization Window contains AWTviz's display and conkol componcnts

and the User Application Window contains the output of the user's running program'

Irn!dhod0
l$b rk s d MyMdh .do

i

' . ui"rnppii.,i, I l

Brllll

@
@

@
@

@
@

2.0 Visualization Window Componcnts

The Visuii l izal ion Window contains six kcy display nd cooll .ol components Thc displ ly

gives the uscl infonnrt ion 4bout whal is happcning within their Program. The contfol

functions 4l low thc user 10 iLdjust lhe spccd ol visualizdl iorl iLnd some ol what is being

visualized.

Iricure l: Visualizltil,n lvindow r d User,\pplicrti Wi lovs ti,r ttst.

pub i (vo id l , l ! l , le tho d0

publ ic !o id M y r " i€ ihod0

int i=4

Melhod cal Stack

@
@

@
@

@
@

HIfi*E
^ . 1

retlay@t (n4 llo,laydt 0);
Label leb6ll = nB Labe] l LBbel cllle)i
Tei r f ie ld rb1 - ns Te*r ie ld{201i
butl = n@ Buctm(Butt6)'
bur1. add.{crlmli sraer (this)i

for (in t i=0i i<5i i++l l
sy3tm. d! .F int ln (' ! i) i
I
I

Figure 2: Visralization Windo* lbr test.

2.1 Code View (|,'igure 2 - A)

Thc code vicw portion of the Visualizalion Window dispJays the code of the user-dctined

program. As each line of code is executed, lhat line is highlighted-

2.2 Specd Control (Figure 2 - B)

The speed control consisis of two parls, a scrollbar and a button Thc scrollbar ellows the

speed of the user's arpplication to be incrcased or decrcased during execution The button

pauses and resumcs tlre execuuon.

2.3 Ca[Stack (Figue 2 - C)

The Call Stack is a listing of the names of each currently active method called by the

user's application sequentially displayed.

2.4 Variable Dlsplsy @igure 2 - D)

The Variable Display is another listing that displays the variables in the user's proglam'

As the values of the vadables change, these changes arc rcflsctcd iII thc display'

2.5 Method HierarchY @igure 2 - E)

The Method Hietarchy is a scrollable area upon which colored boxes are drawn for each

method of the user's application. The boxes are dlawn as the methods are called and

appear in a hierarchy, with sub+alts being indented futhor to the right than the method

tttat catted them. ttri Method Hierarchy canvas will expand when it runs out of room to

display more boxes.

2.6 Menus (Figure 2 - F)

File
Restart - This option causes the program to start again' with all valucs

reinitialized.
Quit - This option will quit the program.

Valiables
<depends on the variables iII the user-defined Fogram> : :1ch v.9r-rable can be

selected or deselected in this menu. When selected' a variable will app€ar in th€

valiable display. When deselecled, it will not appear in the display'

3.0 Using the Program

There are two phases that a user-provided program must S! thrgug! in order to be

visualized. The program must fusi be processed by a set of Perl soripts- to cofiecdy

format it prior to pasiing the formatted code to the Java application for visualization'

Flgure 3r Java code for tart

3.1 Specifrcatlons/ Linftrtlong

One of the goals of this projert was to design a tool that would bs useful on a wide
variety of Foblems and situations While much work was done to ensure this, a number
of unavoidable limitations still exist. In order to run the program the uscr must have a
local copy of the AwTviz program, the Java Development Kit (JDK) 1.1 or higher and
Perl installed, ard Fovide their own Java prcgmm fo! Visualization. When wdting the
Java progam, the user must abide by the following rules. First, the user-provided
prognm must extend java.awt.Framg. Secotrd, thg user may not have any plimitive
variables that end with an undcrscorc. Third, there may not be more than 99 primitive
variables within the Fogram. Fourth, primitiYe variables of different tlpcs may not have
the same name (ie. int alpha and char alpha are not permitted, however int alpha and char
Alpha are acceptable). Fifth, users should not have a method named run0 anywhere in
thef Fogram.

3.2 Pre-processing

The test program, a$ written by the user, has no way of cornmunicating ol interacting
with AWTviz. In order to make this possible, a set of Perl scdpts must modify the user-
provided code. The resulting Java file is an exact Ye$ion of the user-provided code along
with a number of AWTviz methods.

Figure 4: Path of test input code throwh Pre-processitrg'

3.3 Visualization

When the Fe-procossing is complcte and the resulting files are created the Java
application is eiecuted. The Java program reads in the class and text files and uses them
to'd"t"t-in" thc visualization. Utilizing the contols in AWTviz, the usel can conhol
vadous aspects of the pro$am. The u89r can also intelact with his or her own prcgram
ftom within it's own window.

4,0 Code Structure

Coding for AWTviz was done in Java and Perl. The full program consists of three Perl
scriptJand six Java classes. All files rcside and are executed from the AWTviz dire{tory
Figur€ 4 shows the movcment of input through the vadous code s€ctions.

4.1 Perl

The Go script is what the user exexutee from the command line to begin the progam.
MoveBracei is a script that quickly formats the curly bnces in the user's Fogram This is
for AWTviz's uee only and has no effert on the original program copy. Foflnat is the
primary Perl scdpt that adds the necessary code to the user's Fogram allowing it to
interact with AWTviz. (see Figure 4)

4,1,1 Go

co is a simple sffipt that calls each subsequent script and the Java application' Go first
ensul€s that the user's input file exists and is valid by compiling it' (see Figure 5)

' p.^-"m lhiriltiTe.i

Fisure 5: Running AWTviz { i th Go.

4.1.2 MoveBraces

MoveBmces is a short script that handles the fomatting of curly braces within the

inputted program code. When the script linds an open curly brace on a line by itself it

ptaces it on itre ena of the previous line. If it finds a closed curly brace on at the end of a

iine following other code, it places it on the next line by itself This is done to make the

job of the Format script easier and more efficient.

4.1.3 Format

Fomat does most of the work in readying the user's program for use with AwTviz It

uses pattem matching to add instructions for AWTviz and generates a file called

ProgFrame.java.

On the first pass thtough the code,
L Format locates and places in an aray the names ofall user-defined methods'

2. It also ensures that the necessary Java import statements are present

On the second pass,
l Format reads each line of code and interprets it
2. The script will pdnt to the output file the original line as well as necessary code

before and after the line
3. This part of the scdpt checks to make sure the user's file extends java'awt Frame

and contains the necessary implement statements.
4. lt changgs the name of the class from the use/s name to ProgFrame
5. Speciai instructions to link the Visualization Window and User Application

Window together are added to the inito method, in addition to renaming it from

6.
'7.

8 .

9.

l0.If the line contains a variable assignment, three lines are added that retrieve the

current value, adjust the display in AWTviz's Variable List, and updates the value

in AWTviz.
ll.For every non-curly brace line after init0 in the user's program, two lines are

added. These instruct AWTviz to highlight the curent line in Code View and to
pause rclative to the Speed Contlol.

lnlt tO run.
If an actionPerformedo method exists, code specific to that is inserted.
Every other line in the program is checked to see if it contains the nane of a user
defined method or variable declaration or assignment.
If the line contains a user-d€fined method, lin€s arc added to tell AWTviz to

increment th€ level of the Method Hierarchy, to add the method to the Call Stack,

to create a new method box, to highlight that box, to pause long enough for these
actions to complete, and to decrement the level of the Method Hierarchy.
If the line contains a primitive type variable declatation, a line is added that tells
AWTviz to handle the addition of that va able to all necessary lists' arrays, and
hashtables.

Fifre 6: Excerpt from ProgFrameirvs os generat€d by Format.

4.2lavs

4.2.1 AWTlliz

AWTviz implements the AWT Visualizer application. It creates an iostance of Progviz

and calls tho init0 method.

4.2.2 Progviz

Progviz is the pdmary class for the visualization containing all the components
mentiongd in section 2 The class consists of the following methods:

inito - perfoEDs the layout of all the various componelts of the Visualization Window

and sets initial yalues for much of the visualizer.

getcode0 - gets the original code from the user-defir€d prcgram' places it in the code

list, and displays it in code view

selectlineo - sel€cts the proper line in the code list while the program is executing'

mvwait0 - causes the thread running the user defined prcgram to pause just long enough

for the code selection to be in sync with the actual execution

actionPerformed0 - handles AWT actions for this object This method processes events

ftom the menus and pause/resume button in the Visualization Window

adjustmentvaluechanged0 - handles the adjustment of the speed slider'

handleRestaflO - does all the things necessary to restart the progam'

addvariableo - adds a variable into the variable list and displays it in the Visualization

Window.

itemstatechangedo - toggles whether a variable is visible in the variable list or not'

expandcanvaso - makes a larger MyCanvas object (see 4 2 4) and replaces the old one

when there isn't any more room to draw a method box

unhighlighto - calls unhighlight in Mycanvas.

highlighO - calls highlight in MyCanvas.

newBoxo - creates a new box for any user-defined method when it is called, stores the

infomation for it in an instance of Data (see 4.2.3) and then draws the box on the curent

instance ofMyCanvas. If the canvas is too small, expandcanvas0 is call€d'

4.2.3 Data

Data is a class made up of data stuctures that store information about the method boxes

that are display€d in tte current instance of MyCanvas. Since the Mycanvas object will

likely needio Le disposed of and a larger one put in its place, this class exists so that the

data;bout the contents of the canvas may persist. Therc are two methods in this class:

inclrvelo - increments the int vatiable level by one.

declJvelo - decrcments the int variable level by one.

1.2.4 MyCanvas

Mycanvas is the canvas upon which boxes aie drawn in a hierarchical format'

paintO - cycles thrcugh the anay ofmethod boxes, painting each one as it goes

highlighto - highlights a method box if the program is cuflently executing that method.

unhighlight0 - repaints all method boxes, with none of them highlighted

4.2.5 MyPanel

MyPanel is an extension of java.awt.Panel that
set by calling setPrcferedsize0.

allous a specrfic size for the panel to be

4.2.6 ProgFrarne

ProgFrame is the user created program, with some additional code to aid in the

visualization.

5.0 Conclusions and Future Work

When looking at the topic of visualization, we saw that tools already existed to visualize

objects and functions. The next logical step seemed to be a visualization of programs'

The culmination of this summer's research is a tool which can successfully visualize a

wide range of user-defined programs Our program will format the input through a set of

Perl scripts and then display both the user's program and the AWTviz control The

AWTvii program will display and track variables, follow the lines of code' and display in

a graphical manner how method calls are made. The user has control over the speed of

execution and which variables are shown.

While our intention for AWTviz was as an educational tool, it has the ability to be

applied to many different situations. The primary purpose of this program is to visualize

htw the Java Abstract Window Toolkit handles program execution The user can vety

clearly see how the often complex stucture of method calls are mad€ A program wlth

recursion, for example, is much more easily understood by seeilg the parent/ child

relationship in visuil method calls Th€ ability to track vadable assignment in a visual

way may aid students who are confused as to when and where assignments are made-

Finally, control over the speed of program execution allows for quickel comprehenslon

ofthe event processing within one's own program. The academic setting is the most

appropriate place for AWTviz, however it could easily be adapted for software

development and product testing.

There are additional improvements that could be made to fwther the AWTviz progam'

However. because oltime constraints, we werc unable to accomplish ever)4hing'

AWTviz would be an even more powedul tool if it could visualize non-frame Java

aDolications and Java classes. Th- ability to dynamically suppofi any number of vadables

in a user's program would also add to usability. The idoa also arose to color code the

method boxes displayed in the Method Hierarchy according to the level of indentation.

6.0 Aclmowledgments

We would like to aclmowledge the National Science Foundation for thet financial
support of the REU Fogram, We would also like to $a!k Hope College and ow advisor
Dr. Herbert Dershem for their hospitality aIId continued support of computer science and
REU.

