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PROBLEM

This report presents an algorithm for approximating the solution to a
general first order system of ordinary differential equations of the form

(1) ¥y = @9

(2 y) = ¥,
where y is a vector of dependent variables, t an independent variable and f
a function vector. The algorithm utilizes a multistep technique of Crane and
Klopfenstein [ 3], and special procedures for starting the approximation,
stability control and interval modification. These procedures are discussed
at some length in this report.

Included in the Appendicies are sample applications of some of the
discussed techniques.

METHOD OF APPROXIMATING THE SOLUTION

The common methods for approximating the solution of a system of
the form (1) - (2) can be divided into four groups:

(1) One~-step schemes of the Runge-Kutta type.
(ii) One-step schemes of the Nordsieck type. [ 5]
(iii) Predictor-corrector schemes of the Adam's type.

(iv) Predictor-corrector schemes of the multistep type
(terminology from Gear [ 4]).

Group (i) schemes can be ruled out immediately in most cases because
they usually require four times as many costly evaluations of f as methods
from any of the other groups and do not provide an economical measure of the
truncation error.

Group (ii) has much to recommend it, especially in the case when one
is working with a system of higher order equations. Since schemes of this
form are one-step, they have the advantage of being self-starting in a qualified
manner. They also provide an easily attainable measure of the truncation error
and stability and allow the interval size to be changed easily. However, for
first order systems, the equivalent group (iv) scheme has greater simplicity and
is therefore chosen in this special case.
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In reality, group (iii) is a subset of group (iv), but since the use of
Adams Type methods are so comumnon, they rate a class of their own. This
type of method is generally not preferred, however, over those of group (iv)
because a multistep method which uses the same number of previous points
hag either a higher order truncation error or a larger region of stability,
with the only cost being storage, which is not a high price on modern machines.

Hence, it is an algorithm for solving the system (1) - (2) using a
method of group (iv) that will be described in the following. The particular
member of this group that is recommended is the one suggested by Crane and
Klopfenstein [ 3] , especially if one wishes to obtain a large region of stability
near the real axis,

GENERAL DESCRIPTION OF THE ALGORITHM

A flow diagram of the algorithm for obtaining an approximation to
(1) = (2) by the predictor-corrector multistep method is found in Figure 1.
The automatic starting procedure STARTER, the interval modification pro-
cedures, HALVE and DOUBLE, and the boolean procedure for detecting
instability, STABLE, are described in separate sections and flow diagrams.
A list of the input to the algorithm and explanation of the other symbols appear-
ing in the flow diagrams are found in Table 1.

The algorithm begins by calling on procedure STARTER which determines
an initial step size which will keep the truncation error within specified bounds
(¢ ;max and € i) and insure absolute stability. STARTER then integrates
forward the required number of steps using a suitable one-step method. One
which is highly recommended for this purpose is the Runge-Kutta Technique
of Ralston [ 6] . The number of steps evaluated by STARTER depends upon
the number of previous points needed by the chosen multistep method.

After STARTER has completed its task, a predicted value Py4, of the
dependent variable vector and a corrected value y,4; are computed by the
multistep scheme. The corrector is reiterated, using the last obtained correct-
ed valuec to compute the derivative, until the specified number of derivative
evaluations, DPS, have been performed. Note that DPS can be, and usually
will be, one,in which case the corrector is not reiterated at all.

Once this is done, an estimationof the truncationerror is obtained.
Letting e; = [ P le where P and yp, are the ith.components of Pp and
-}}-n’ the error at the nth step is expressed by

, e,
E = w, min [e;, i ]
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where the w; are weight factors to be determined by the user (05 w,; < 1).

e

max ; : . . max
If i Eni =aic min: the inverval is doubled. If ]Z.‘n1 A R

the interval is halved. Otherwise, the value of the 1ndepr_ndent variable t

is incremented and a test is made to see if the s stability check should be applied
at this point. The stability check is scheduled to occur at a fixed interval (te)
on t. t, is determined by the user and is dependent upon how much time is
consumed by the stability check and how crucial stability is in the problem
being run. If the method is not stable at this point, the step-size is halved,
the necessary bookkeeping is done and the process proceeds. If itis stable
the program continues with the next application of the predictor.

AUTOMATIC STARTING PROCEDURE

The major goal of the automatic starting procedure STARTER (see
Figure 2) is to choose a starting value for the step size h consistent with
requirements on truncation error and absolute stability.

The stability criterion is handled first. The initial value given to h
is 1 which guarantees that hy,in < h < hy ., because of conditions on hmin
and hyax. Then a test is made for stability at that value of h. If the method '
is stable, h is doubled until a value is found for which 2h causes instability
or until 2h > hyax. If stability does not hold for h =.1, h is halved repeatedly
until a stable value of h is found or until h is cduccd to less than hy,in, in which
case an explanatory message is printed and the process is terminated. When a
suitable value of h is found, the next k points are evaluated (when the predictor-
corrector is a k-step method) by the chosen one-step starting scheme.

Now the value for yj. thus obtained is used as a predicted value in the
k-step corrector formula and a corrected value of Vi is then computed. The
difference of these two approximations to V) is then used to estimate the
truncation error at tk If this error is too large, the step-size is halved and
the one-step method is again applied starting at the initial point. This process
is continued until a suitable step-size is found or h falls below h ins In the
latter case the process is halted.

It should be noted here that the estimate of the truncation error ocbhtained

in this manner at t) will tend to be conservative so that the starting step size
may be smaller than necessary.

STABILITY CHECKING PROCEDURE

A method is known to be stable at a given point if all the zeros of
the characteristic polynomial of the method lie within or on the unit circle and
those lying on the unit circle are simple [ 3]. The coefficients of the charac-
teristic polynomial involve terms containing H where B =h - Ni« The \j are
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eigenvalues of the matrix J which can be represented by

Therefore, the first step in checking stability is obtaining approximations
for the eigenvalues \; of J. The technique used for accomplishing this is up to
the user and will depend greatly on the nature of f.

Next a method is applied to determine whether all of the zeros of the
characteristic polynomial of the multistep technique are inside the unit circle.
The characteristic polynomial can be obtained using analysis similar to that of
Chase [2] . Analytical Techniques (such as in [1]), or previous knowledge of
the region of stability can be used to accomplish this purpose. Examples of
techniques derived for a given problem are found in the appendices.

This procedure is boolean in nature and returns with a true value if the
method is stable and with a false value if the procedure was unable to verify

absolute stability.

CHANGE OF INTERVAL

If the truncation error is found to be too large, the procedure HALVE
(Figure 4) is called upon. HALVE checks to see if halving the step size would
result in a step size which is smaller than allowable and if there have been more
than the allowable number of halves inflicted (h,) without the integration pro-
ceeding to the next point. In most cases h, should be 1, but for extremely
rapidly changing f, a larger h, may be used.

If neither of these terminating conditions is present, then'y (t—-l* h),

v t-—*E h)y = « « yit- ‘3._?__... h) are computed by means of the same one-step
method which was used as a starting procedure. h is then halved and the inte-

gration is resumed by returning to the predictor-corrector formulas.

"T".)

If the truncation errors are all smaller than the minimum tolerable,
procedure DOUBLE (Figure 4b) is entered, DOUBLE first checks that there
are enough points available for doubling to occur. For a k-step method "enough'"
ig 2k-1. If not, a return is generated and the procedure does nothing. Nexta
check is made on how recently a double was attempted but rejected because
of a stability criterion. If this has occurred within t. of the current value of
t, the procedure returns. This is to prevent excessive time-consuming calls
on STABLE when the step size for stability is smaller than that required by
truncation error.

Next stability is checked for step size 2h and 2h is compared with h .
to insure that doubling would not cause the bound on h to be exceeded. If both
of these tests allow, h is doubled andthe necessary bookkeeping handled.
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TABLE 1

INPUT TO PREDICTOR-CORRECTOR PROGRAM

Number of dependent variables (integer).

Initial values of dependent variables (real 1 X N array).

Weights used to test truncation error (real 1 X N array).

Initial value of independent variable (real).

Terminating value (if any) of independent variable (real).

Increment of independent variable at which stability is to be checked (real).
Degree of the characteristic polynomial of the Jacobian (integer).

Degree of the characteristic polynomial of the P-C method (integer).
Characteristic polynomial of the P~ C method (real function).

Absolute maximum of step size (real). (1 £ hmax)

< h <

Absolute minimum of step size.(real). (0 £ hjn < 1)

Number of consecutive halves allowed at one point (integer).
Number of derivatives evaluations per step (integer).
Constant used in determining truncation error (real).

Upper bound on truncation error (real).

Lower bound on truncation error (real),

Other variables in the flow charts but not input.

largest real eigenvalue of the Jacobian at the current point (real).

Storage for the last value of the independent variable where a double
of step-size was attempted but rejected because of stability (real).

Value of | yn~pnl X MCON. (real 1 X N array)

Temporary storage for number of consecutive halves (integer).
Independent variable (real).

Step-size (real).

Value of the independent variable at the previous stability check (real).
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APPENDIX A

STABILITY CRITERION FOR A SAMPLE PROBLEM

Let FY— i (Y:l’ Y2:,¥3:¥4:¥5 2 Y6 ) and ? = (:rl :fZ !fS:f-i- .‘_ff_i !fé )' Then
consider the system

-)‘r- — i (t, }r)
where
£y ltsy) o= V4
£ (t,f) = s
i, (t, YI) = g
£, (67y) = = Elya-wy) = Ayys +Agye = Gryi
f;(t,7) = -~ Eys - g
f(, (t;h}?) = 7. E(YG "Wx) = —Ay ya 'A_}; Y5
where
B = Efye yeq¥sa¥6) = Y *kvp* V- Ky

= Y'k'P {YZ)V(Y«L,YE,:YO)'KD (Y-E:Y.:-.:Y{,)'

Now y and k are constants, p depends on y; from a table, Ky depends on
V from a table and

2 2 2 1/
V o= [(ysy= Wyl + ys © + (yg ~wy) dl .
Therefore
oK o}
e———— = V . k . I{ Lo
9y, i D 2 Ya
oK 0 KD oV
S = k* ) = e = S G SRl
8y, Y *p [ay_l Dt 5V 3y V] (i =4,5, 6.)
But
Qe Cyamvm S BN yet BN g o
3y, V. 7 9y v o9y, T 4
oE | ( ¥ Kp oKD
- T Ty — L . - A=W ————— s
. . 8 yé Y P Yl b V 8 V
13



OE = T Kp  2Kp.
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0 Ve it p Ve i 7 A% b3l V h/
9Ky 8 p ‘ .
————and - can be obtained from the tables used to find Ky and p. If
OV 9y, _ D

interpolation is linear the slope is constant between any two tabular values.

Now let

[=2]

fi 2 = o ‘E‘j:_.
il Yj

©

We compute the following:

OF
9 y4

I
t

f;_i.fl. O v (y- 4 ,_\&*:'X) -

fgs B 2By~ (Yar W) Fgfs

fre = TAL - (ye-Wy) %i

Teg % =¥ ’2“}%

fsg = ~E-ys 2*3*;

fs6 = - s -3;"?

o = - Ay W) g

e = A SlypeWg %‘};

fis, = = E - (y-W,) ‘;; :
14 ¢
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Fox

i = 4,5 6:
dy'i-3
df: q ".,.—., “'1 i 11_.“3
s g SPEES AN S s
dy, dy, dy, yrz
't
Also,
df' 6 dy' I!.m
SwRls i o fi ; g2 e ..X..}] —
dy; j=1 ) dys Y2
1
4 6 d —_—
i, = (FE . 3 g Ay Gy
4 y'2 J=1 7)) dyy v
j#i ‘
111"3 3 y'j 6 1
(epece i i hegh S A ~‘%-~) e
2 e TR S e T Y 2 y i-3
j#i
Hence all fi.z can be computed.
Therefore, the Jacobian Matrix J is
0 0 0 1 0 0
0 0 0 0 1 (0
T = 0 0 0 0 0 1
=@y, fap 0 f44 f45 f46 ’
0 f52 0 £54 f55 f54
0 fe2 - 0 fea fes fo6

The characteristic polynomial of this matrix is

P(t) = % + (fyutfog +fgg ) t° + (fagfos +54u 80 Fhss Fug = fup fiy ~Fie Toy
fﬁa fsa =Y fs?. = Gl-) t"{" 2 (f-izl Iss 093 +f~L5 f;—'{; foat f4g fe5 £54

]

~ fgafyy fop = fa5 fafep = faufos fus +Easfan+fug fonmfagfes

f f;z"" G ~£7.7 + G .f )1.3 [‘ (f:lf—iﬁ fﬁ._é ‘} f‘i__‘f-'é fﬂﬁ ‘nlfgé f&._r f-"x
66 s riss 66 5 44

- f:‘r-ifdﬁ féz—f‘---f’s f-» —fﬁ_éfsé fa&". = GrfSJ ]66 G f- I‘ DL, f— ) t
= (Gpfse fo2~ Gpfes £52) t ‘




APPENDIX B

ol

TESTING TO SEE IF ZEROCS OF A POLYNOMIAJ: LIE
INSIDE THE UNIT CIRCLE

‘Two possgible techniques will be discussed for locating zeros of the
characteristic polynomial. The first is more time consuming, but also
more accurate than the second.

The first is based upon a technique suggested by Cain (1), and uses
the concept of the winding number of the polynomial on the unit circle.
This is accomplished by evaluating the polynomial at certain small incre«
ments around the circle and counting the number of times the image curve
winds around the origin. The increment used in the actual program was
'.5:%- , but it was decreased whenever both the real and imaginary part of
the image changed sign over a single increment.

This second technique uses prior knowledge of the region of stability
to determine directly from the eigenvalues whether or not the method is
stable. For example, one could simply check the largest circle inside the
region to see if all eigenvalues were contained in it. This would allow
considerable savings when calculating the eigenvalues since only the largest
modulus need be found.
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