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APPROXIMATION OF THE BESSEL EIGENVALUE PROBLEM
BY FINITE DIFFERENCES*

HERBERT L. DERSHEMY

Abstract. Difference equation problems are studied whose solutions are estimates of the solutions
of the eigenvalue problem

" l ¢ "z i
Ly=s —y' ——y' +—y =14y, xe(0,1),
X X

}’(0} = 0! J‘(l] =z 09
for 0 < v < L. Three-point difference operators, L,, are constructed so that L,o™(x)) = L oW(x)),
k=1,2,3,j=1,:--, N, where {®®}2__ is a given set of [unctions and X; = jiN + 1),

An upper bound on the distance between an eigenvalue, 4, of L and the set {A,}Y of eigenvalues of
any three-point difference operator L, whose coefficients satisfy prescribed conditions is obtained.
The bound is a product of a constant and the max norm of the truncation error of L and L, with
respect to the eigenfunctions of L corresponding to 4. Two appropriately constructed difference
operators are shown to have coefficients which satisfy the prescribed conditions, and for these,
minjA — A/ is shown to be O(h?).

1. Introduction, The eigenvalues of the Sturm-Liouville problem
(P(x)y) — q(x)y" + Arx)y =0,  x€(0,1),
(1) agy(0) — a3’ (0) =0,  byy(l) + b,y'(1) =0, =20, b0,
lal + la,| # 0,  |bo| + |b,| # 0,

are frequently approximated by the eigenvalues of a corresponding finite difference
problem, where the finite difference problem is constructed in such a way that the
differential operators in (1) are replaced by suitably chosen finite difference
operators over an equally spaced mesh of length h. If the coefficients of (1) are
sufficiently well-behaved, that is, if p,r > 0, ¢ = 0, and p, ¢ and r are sufficiently
smooth on [0, 1], finite difference approximations can be found such that the
eigenvalues of the difference problem are within O(h?) of the eigenvalues of (1),
For example, Keller has shown this to be true if p’, ¢ and r are continuous on
[0,1] and all derivatives are replaced by their standard central difference
approximations [4, pp. 135-137]. Hubbard [3] has shown that a similar result
holds when p, g, r are piecewise continuously differentiable, the coefficients are
replaced by averages of the coefficients over the mesh, and each derivative is
replaced by its forward difference approximation.

Variational methods yield higher order approximations to the eigenvalues of
(1). See, for example, [1]. The assumption that p and r are positive in the closed
interval [0, 1] is also made for determination of error bounds of approximations
obtained in this way.

Sturm-Liouville problems with singularities arising from p vanishing at one
of the endpoints of the interval are not included in the error analyses such as those
mentioned above. It might be expected that for such operators the order of the
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error bound might be lower than it is for nonsingular operators. An example of
such a problem is the Bessel cigenvalue problem

2
5 Gy =Sy +ap=0,  xe0,)),
WO)=0, H1)=0,

which has a regular singular point at x = 0. The results given in Table 1 in §4
show that the finite difference problem approximating (2) which is defined by
replacing each derivative by the standard central difference approximation has
smallest eigenvalue which differs from the smallest eigenvalue of (2) by O(h**) for
0 <v < 1 and O(h? for v = 1. We see that Keller’s result does not extend to
problem (2) for 0 < v < 1.

To study the effect of such a singular point, we limit our study (based on [2])
to approximation of the eigenvalues of (2) by the eigenvalues of the tridiagonal
N x N matrices obtained from the approximations of (2) by the finite difference
problem

Lhquajuj—l+ﬁjuj+?juj+1:A“js il I
(3)

Ug = 01 Uns1 = 0’
with constant mesh length h = 1/(N + 1), N a positive integer, where L, is a
finite difference approximation to the differential operator L given by
(4) L ekl " 1 ! + ﬁ
Lk B LR L &

Note that (2) is the eigenvalue problem for the operator L with appropriate
boundary conditions.

A bound on the distance of any given eigenvalue, 4;, of (2) from the set of
eigenvalues of (3) is given by Theorem 1 as a constant times the max norm of the
truncation error of L and L, with respect to the eigenfunction associated with 4;
when the coefficients of L, satisfy certain conditions.

We study three difference operators denoted by Li', Li?), Li¥. The first of
these is the standard central difference approximation to L on the mesh. We show
that the operators Li!) and L are inconsistent in the sense that the max norm of the
truncation error is unbounded as h | 0 when 0 < v < 1. These two operators are
consistent with respect to a different norm, but this fact is irrelevant to the present
study. The truncation error of L{!) and L is zero for any quadratic polynomial
v(x) = ax?® + bx + ¢, but quadratic polynomials yield poor approximations to
the eigenfunctions of L, which behave like x* as x | 0 for 0 < v < 1. This is the
reason that the max norm of the truncation error is unbounded. Nevertheless, we
observe that the eigenvalues of the difference problem converge to those of the
differential problem, but at a slower rate than for the nonsingular Sturm-Liouville
problems.

The operator L{?)is derived in such a way that account is taken of the behavior
of the eigenfunctions of (2) near the singular point. The coefficients o, B, y are
determined such that for any function 1(x) = ax**? + bx"*! + ¢x*, the value of
L{®p(x) is the same as the value of Lu(x) at each mesh point, ie., the truncation
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error for L{?) and L is zero for such functions. The eigenfunctions of (2) are constant
multiples of J (A'?x), where 4 is the corresponding eigenvalue, and J (x) is

2 1
J v+2h - v
v{x Z Cak klr[\’ 3 k i 1)2\'+2k

Thus, the operator L{? is constructed so that a better approximation to the eigen-
functions near x = 0 is achieved than when quadratic polynomials are used.
Furthermore, away from x = 0, functions of the form v(x) = ax**? + bx"*! + ex
also yield good local approximations to the eigenfunctions. It follows, as it is
shown in § 2, that the max norm of the truncation error is O(h?), and since L{?
satisfies the hypotheses of Theorem 1, it is a corollary that the eigenvalues of
L{? differ from those of L by at most O(h?).

The operator xL is self-adjoint, but the operator xL{*'is not. To better approxi-
mate this property of L, the difference operator L{* is constructed by finding
coefficients a, 8, y such that for any function of the form v(x) = ax**? + bx", the
value of L{>v(x) is the same as the value of Luv(x) at the mesh points and, in addition,
the operator xL{* is self-adjoint. The truncation error of L{* and L is shown to be

O(h?), and it is a corollary of Theorem 1 that the eigenvalues of L{> differ from those
of L by at most O(h?).
In § 4 numerical results are displayed which illustrate these conclusions.

2. Truncation error analysis. The operator L§' constructed so that
L{"v(x) = Luv(x) at all mesh points for all quadratic polynomials v is given by

) 11 L i
(5) Lh W = ‘—Hi B ‘z—i'h"z “J— 'Ez = ;2? u; - _h_g __2%'1' ”JI-I-Is
;-= ]‘...‘N‘

for any set of numbers {u,}. We define the set of functions %, by

(6) F = {yly{x) = Z ey 2, y(x)/x" e CHO, 1]}-
h=0

We note that all eigenfunctions of (2) belong to .%,. Application of Taylor’s
theorem with remainder to any function y € %, gives
2

_h h?
M L) = Litx) = —5"0) + () 21 —
Ji= v, N,

where x;_; < <{ <& < Xxj4,. As h | 0, then x; = jh, with j fixed, is such that

x; | 0. Hence, for fixed j, y"(x)) = O(h*~ %) and y™(x;) = O(h*~*) as h | 0. There-

fore by (7), we have in general that

) ILOx) — Lyl = Havv — DAV = 2)co)*™*h* 2 + O,
j=lt"'1N1 _vE:;z‘:n

241

where | - ||, denotes the max norm. Since 0 < v < 1, we have that Lj'’ is not
consistent with L with respect to the class of functions Z, and in the max norm.

The operator L is constructed so that L{>v(x) = Li(x) for x = jh,
j=2,:++,N, and for all v of the form v(x) = ax""? + bx'*! + ¢x". Such a
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construction is accomplished by solving, for each value of j, the system of three
equations given by

©) aXith o+ Byt it = LT k=0.1,2,

for a;, f;, 7;. In the case where j = 1, we note that x;_; = xo = 0, so that (9) re-
duces to three equations in two unknowns since o, has coefficient zero in all three
equations. In order to make the system solvable, we eliminate the equation for
k = 1, reducing the system to two equations. In other words, we make L{* agree
exactly with L for all functions of the form ax"** + bx" at the first mesh point.
The operator L{?) constructed in this way is

4 Yl
LPu, = ——V3:2 4|:u| - (5) uz],

@, - [_J i v Y Zom
(10) L u; = (,,-"— 1) hz( 1 + 7 4 Zj)uJ_I + hzu_,
i | ¥ | ;
e [ e it

For any y € Z,, x ~"y(x) is in C*[0, 17. If x;2', y(x; ;) and x} ", y(x; - ) are computed
by Taylor’s theorem with remainder, and substituted in (10), one obtains

(11) LPy(x) = Ly(x)) + O(h?), j=2,:+,N.
When j = 1, we have

(LR = Lyx) = L2 = 1) Y, ey
k=0
(12)

(£4] § 4
= pt? Z Czk[‘h A = 4f;) — v+ (v+ Zk}z]hnzk—-;
k=2 3
= O(h**?).
Therefore, (11) and (12) give
(13) ILP = Lyl = O(h?), yeF,

As mentioned in § 1, the differential operator xL defined by
2

(14) xLu(x) = (—xu') + Lx“' i <21

is self-adjoint. The finite difference operator L is constructed so that it agrees
with L on the mesh for functions of the form ax**? + bx", and the operator
xLi» defined by

(15) (xLu; = jhLu;, j=1,---,N,
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is self-adjoint. The operator xL{ is self-adjoint if and only if its coefficients are

such that o,y = (j/j + 1))y;, j=1,---, N — 1. The coefficients of L{’ are
therefore defined by the recursion relations

4 1\* 4
By = ﬁz(v + 1), Yy = = (f) W(\’ #: 1),

1y gL o g o . s
O sl T e I ol il s ke DB

_ e =0 =1 g ot D A
WEGFL T oy PTG e DR F

The first order difference equation for y; in (16) can be used to generate the

- i— 11" 4 4 + 1
j _F w s bois Mo+ 1)

j=2,-++,N.

sequence of values y;,j = 1, ---, N, and this result used to obtain
«vleﬂvfi e
_ k2v+1 ALy e S
i =" | 1= 2, 21 +j)2
4('.' + Ul § .55 . 1 .
= 2h2 ;2k§1k2“+§j + K|, J=ily ey N

where | K] is less than some positive constant K for all values of j.
We now show that

2
(18) B; = h2+ O(l)

The quantity in braces in (17) is equal to the estimate of the integral of x***!/j2"
from x = 0 to x = j by the trapezoid rule applied at each of the j + 1 equal sub-
divisions of 0 < x < j. Since the graph of this positive integrand is concave up-
ward, the estimate is an upper bound on the value of the integral, which is
J*/(2v + 2). The value of the sum in the braces in (17) is equal to the estimate of the
integral of x***!/j2" from x = § to x = j — 4 by the midpoint rule applied at each
of the j equal subdivisions of [3,j — 4]. Since this positive integrand is concave
upward, this estimate is a lower bound on the value of the integral. Hence, an
upper bound on the quantity in the braces in (17) is j2/(2v + 2) + ¢;, where [c )| is
less than some positive constant ¢ for all j. Therefore, the two bounds on the value
in the braces yield (18).

Suppose y € #,. Then v(x) = x~"y(x) is in C*[0, 1]. If we use Taylor’s theorem
with remainder to expand v(x;, ;) and v(x;.,) about x = x;, and use the fact that
{o;} and {y;} are determined so that ;L.m(ax‘+2 + bx') = L(ax""? + bx*) on the
mesh, we have

2 2y 2
uw—zﬁhﬁ=(1—%ﬁJPﬂar—‘+1ﬁuﬂ+“v§)ﬂﬁﬂ
X X;

v=213 hz 2 1 ]32
(19 - B+ 2 D Ly - g

ﬂj’”m s 1]@%@~w%@@,j=1,u,w,
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where x;_, < { < & <1 < x;;,. But from (18), the fact that

, 2y1 v+ 2 >
Vi(x) = Y(x) + { 5 ]y(xj} = O(1)x; ™,

and v"(x) = xO(1), we have from (19), after some manipulation, that

(20) I[L — Llyll, = O(#?), ye &,

3. Error bounds. We define the vector norms || - [|;and | - ||, in the usual way,
that is,

N 1/2
Izl = ( Y, Zf) ozl = max |z
k=1 k
and a matrix norm subordinate to the vector norm || - |5, for any real symmetric
matrix A, is
”A“?. = Mrnux';

where 4, is an eigenvalue of A4 with largest magnitude.

Since the difference eigenvalue problem (3) has homogeneous boundary
conditions, the coefficients o, and y in (3) can be set equal to zero. Then the eigen-
value problem (2) is equivalent to the eigenvalue problem for the N x N tri-
diagonal matrix 4 whose elements are given by

Qi1 = Vs Aipq,j = %jiao =1, vy N = 1
- sy s

i A

Theorem 1 is an extension of Keller’s [4, Theorem 5.3.2] result which holds
only for A symmetric.

LEMMA 1, For any N x N real matrix A, if there exists a positive definite
matrix D such that DAD™" is symmetric, then the eigenvalues {A;}}- of A are
real, and for any real number A and any nontrivial N-vector y,

[(DAD™' — AI)Dy||,
[ Dyl , ;

Proof. Since, by hypothesis, B = DAD™ ' is symmetric, the eigenvalues of 4
are all real. For any nontrivial y, we set t = (4 — Al)y. Then
(DAD™* — AI)Dy = (B — AI)Dy = Dr.

If 4 is an eigenvalue of 4, minJA, — A| = 0, and hence (21) holds for such a 4.
If 1 is not an eigenvalue of A4, then (B — AI) is invertible and
Dy = (B — Al)~'Dr. Since, by hypothesis, (B — AI)” ' is symmetric, we have

(21) mkinif\k—ﬁlé

1Dyl2 < 1B — M) Dxl
1 1
e E— < ————F|Dtll5.
< max Mk_ﬂ)nmnz el
k

Furthermore, since | Dy||, and min,|A, — 4| are nonzero by hypothesis, we obtain

min A=Al S 1D/ Dyll2-
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By the definition of 7, this is the same as (21). This completes the proof of Lemma 1.
LEMMA 2. For any N x N real tridiagonal matrix A, for which the products
a;;_1a;—1 ;] =2,-++, N, are positive, there exists a positive definite matrix D
such that DAD™ " is symmetric.
Proof. If Dis an N x N positive definite diagonal matrix, with kth diagonal
element denoted by d,, defined by

N Vi e
{22} sz{aJ;w) dJ‘—l‘ Ji:2|”'3N\
Bi=1

with d; an arbitrary positive number, then computation shows that DAD ™! is
symmetric. This completes the proof of Lemma 2.

We denote the ratio a;_, j/a;;_; used in the proof of Lemma 2 by R{"),
R®, R for the matrices whme eigenvalue problems are associated with tho::u
of L},” Li? and L§» respectively. From (5), (10), and (16), we have that

: : =24 i
R = R = [ 1 gty =
S e i j =1 i =

We obtain an error bound for a set of operators which include these three operators
by the following.

LEMMA 3. For any L, as in (3) which is such that there exist a real number |, a
positive integer s and sets of constants {a,}, {b,} with a,, b, > —2 for which

J

B
J ;_ 1

19— | b

. ‘J 5 .
Ppic +da .
h_.'.z(_.e’_._) H__i k>0, Ji=2 e N
o; J— 1] i+ b
there exist positive constants ¢, and ¢, such that
cy® 17 2 e, j=1,:,N,

where D = diag(d, -+, dy) is as in (22), A is the matrix associated with L, and
m= I’ i Z;‘= I(ﬁk = bk)'
Proof. From (22), we have

g e /
d}=d§l:[(k—_ l) ]—lk+b =d3j'2™! ]:[3
be

m=1
The value of d, is arbitrary and we choose it to
and hence,

(23) [:{ U

In terms of the gamma function [6, p. 237],

k

[T (@ + a) = 'k + a)/T'(a).

p=1
An application of this to (23) gives

e B T ey
@) j ,.,”1 @+ a,)TG + b,)
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For a given operator Ly, the product [ [5,_, I'(2 + b,)/T'(2 + 4,,) is a given con-
stant K,since gy, b, > —2.
1t follows from Stirling’s formula [5, pp. 254-255] that

L+ ayT(j +b) = j~"(1 + 3,

where {J;} is a sequence of values which tend to zero as j — . Applying this to
(24), we have

d}::KjHE{l-‘}-rjj], _,-"=2,"',N,

= Z [am - bﬂl)
m=1

and where §; —» O as j —» co. Wechoose ¢, = Kinfj(1 + J;)and ¢; = Ksupj(l + 9)
and the proof of Lemma 3 is complete.

LEMMA 4. For y; = J(A'?x;),j=1,--+, N,0 < v < 1, and any real positive
number A, and D = diag(d,, -+ . dy) Guch rhat there exists a nonnegative real
number m and positive numbers ¢5 and ¢4 such that

(25) caf® Sdy S cals o T O

there exists a positive constant K such that |Dy|, = KN™*1/? ﬁ;u h=(N+ 1!
sufficiently small. Furthermore, for any vector w, | Dw|[, < ¢,N™ "' ||w||,,
Proof. For a given value of h, we have

| =

2m N
) 2. Yk

k=N/2

(26) ||D}’|lz — Z dgyi 2 Z, dk.vk =

k=N/2

We note that

I
lim Z yAN + 1)1 =.[ [J,(x)]? dx = K,

N—to p=Nj2 12
for some K, > 0. Hence, if h is chosen small enough, Y ¥_y ., vi = $Ko(N + 1).
If h is that small, then we have, from (26),

2
||D}’||z g {rj(%)nl+132Nm+l! K(llfli

Also, for any N-vector w,

N
[Dw|3 = Z diwg £ m:aucd2 Y wi £ e N2 w2,
1

k=

This completes the proof of Lemma 4.
THEOREM 1. For any L, as in (3) which has coefficients such that

")’j—k_(f ‘
o5 i L s

i
where a,, b, > —2 and | is some real number, and for any eigenvalue /. of (2) and
corresponding eigenfunction J (A'?x), if m= 1+ Y5_ (a, — b) = 0, then for h
sufficiently small,

(27) min|A, — 4| £ Cl(4 = 4Dyl

J+

.=3$"'1N9
J+b;¢ J
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where C is some positive constant, {A}r-, are the eigenvalues of the tridiagonal
matrix A of coefficients of L, and y is the vector (J (A'?x,), - -+ , J (A'*xy)).

Proof. By Lemma 2, we know that the hypotheses of the theorem are sufficient
for the existence of a positive definite diagonal matrix which symmetrizes A.
Lemma 1 implies that

(28) min|Ay — 4| = |D(4 — ADyll2/I Dyl
By Lemma 3, there exist positive constants ¢; and ¢, such that
AP sl g, =2, N,
But by hypothesis, m + 2 = 0, so that Lemma 4 implies
(29)  IDyl, 2 KN™*112, ID(4 = AD)yll, S caN™ 12 (4 — ADyll o

for some constant K independent of h and h sufficiently small.
We combine (28) and (29) to obtain

min|A, — 4| < LKZ—II(A — Ayl = Cll(4 = ADy|l -

This completes the proof of Theorem 1.

Theorem 1 can be applied to the difference operators L{?) and L{> to obtain
the following corollary.

COROLLARY 1. The eigenvalues {A,}N- | of the tridiagonal matrix A of coeffi-
cients of LY (respectively L{>) are such that, for any given eigenvalue . of (2) and
Jor h sufficiently small,

min|A, — 4 = 0(1).

4. Numerical experiments. In the numerical experiments conducted in
relation to this study, the smallest eigenvalue A, of the three difference operators
LV, L? and LY were computed with error no greater than 1078, In Tables 1
through 3, the amount these approximations differed from the smallest eigenvalue
A, of (1) is given for each operator for v = 4,4,3,and N + 1 = 1/h = 4, 8, 16, 32,
64, 128. For any two successive values of N + 1, a value of the experimental order
of convergence (EOC) of the error as given by log(ewy  1y2/ey+1)/10g 2, where
ey+1 = |4y — Ay|, is also tabulated. The experimental order of convergence is
the power of h by which the error is decreased, computed from the values of the
error at a given value of h and half that value.

The hypotheses of Theorem 1 are satisfied when L, isany of the three operators
discussed in § 2. Hence, we expect an error bound for the eigenvalues of these
operators and any eigenvalues of (1) to be given by Theorem 1.

Since by (8), L{" and L are not consistent with respect to the class of functions
Z, which contains the eigenfunctions of (1), Theorem 1 does not imply convergence
of the eigenvalues of L{! to those of L. The results displayed in Table 1 indicate that
such convergence does occur in the case of the smallest eigenvalue of (1), with
apparent order of convergence 2v. Such behavior of the eigenvalues of L{* can be
verified by a technique of Weinberger [7].

Corollary 1 isillustrated by the values in Tables 2 and 3.
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TABLE |

715

Errors and experimental orders of convergence for the smallest eigenvalues of L{" and L

v=1

v=14

2

N+1
Ag—ihi EOC A=l EOC Rt EOC
4 1.122E — 1 1.518E — 1 —3.828E — 1
0.31 —0.41 245
8§ 9.068E — 1 2.028E — 1 —6.988E — 2
0,50 0.64 2.80
16 6.432E — | 1.294E — 1 —1.OOSE — 2
0.53 0.86 6.75
32 4.447E — | T.113E - 2 9.310E — 5
0.53 0.94 —3.12
64 3J.072E — | 3709E — 2 8.096£ — 4
0.53 0.97 0.71
128 2131E — 1 1.892E — 2 4.946E — 4
TABLE 2
Errors and experimental orders of convergence for the smallest eigenvalues of Li¥ and L
V=14 v v=1
N+
Ay=a, EOC A= 4y EOC Ny EOC
) —3.206E — 1 —4970E — 1 —6.915E - 1
1.93 1.98 2.00
8 —8427E — 2 —1.262E - 1 —1.730E = 1
1.98 1.99 2.00
16 —2130E -2 —3.167E - 2 —43ME -2
2.00 2.00 2.00
32 —5.336E - 3 —~7.925E - 3 —1.084E — 2
2,00 2.00 2.00
64 —1.335E - 3 —1.982E - 3 —-2711E =3
2.00 2.00 2,00
128 —3337E — 4 —4.954F — 4 —6.719E — 4
TABLE 3
Errors and experimental orders of convergence for the smallest eigenvalues of Ly and L
ve=d Y= 5 v=3
N+ 1
Ay & EOC A EOC Ai=d EOC
4 —2849E — | —4.970E — 1 —7.610E — 1
1.95 1.98 1.98
8 —7356E — 2 —1.262E — 1 —1.928E — 1
1.97 1.99 2.00
16 —1.873E - 2 —3.167E - 2 —4833E -2
1.98 2.00 2.00
3z —4.739E - 3 —7.925E — 3 —1.209E — 2
1.99 2.00 2.00
64 —1.194FE — 3 —1.982E - 3 —3.022E - 3
1.99 2.00 2.00
128 —3.002E — 4 —4954E — 4 —1.555E — 4
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