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Abst rci. Diference cqudrion probtensale srudied whosc solutions aie estinarcs ofthe sotutions
of the ctenvrlue probl€n
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An uppe' bound on th€ disrance belween an cis€n valu€, i, ofL od rhe ser { J}l oreisenralues or
an! three-point difle.enca operator ar whose coemcients salisty pre$ribed cooditiotu is obrained.
The bound is a producl ola conslant and lhe nax norm oi rhe tru.calion error oI t and L. wirh
rcspc , '  ru  rhe  e .Ben lun f 'un \  o l  L  cor re ipondrng ro  ̂  1 t ro  appropn e t j  (onnrucred  d , f le re rcc
opcrators are shown lo bave cocfiicienrs which satislt tbe plescribed conditions, and for lhese.
nlnrl,l Ar isshown ro bc o(/,,)

l. Introduction. The eigenvalues of the Sturm Liouville problem

(p(x)y')' - slx)!' +,t/(r)jr = 0, i € ( 0 , l ) ,

(1) a0J,(0) - ar) '(0):0, bor,(1) + rr) '( l)  = 0, ar 10, br f 0,

l d o l  +  d , l  * 0 , l ro i  +  l r l l  +0 ,
are &equently approximated by theeigenvalues ofa corresponding 6niae difl€rence
problem, where the finite difrerence problem is constructed in such a way that the
difrerential operators in 1l) are r€placed by suitably chosen finite diflerence
operators over an equally spaced mesh of length l. If the coemcients of (l) are
suliciently well-behaved, that is, if p, r > 0, q > 0, and p, 4 and r are suliciently
smooth on 10. ll, Rnite difference approximations can be found such that the
eigenvaiues of the diflerenc€ problem are within O(rr) of the eigenvalues of (t).
For example. Keller has shown this to be true if p',4 and r are continuous on
10, 1l and all derivatives are replaced by their standard central diflerence
approximations [4. pp. 135 t37]. Hubbard [3] has shown rhar a similar resDtt
holds when p,4, r are piecewis€ continuously differentiable. the coemcienls are
replaced by averages of the coemcients over the mesh, and each derivative is
replaced by its forward diilerence approximation.

Variational methods yield higher order approximations to the eigenvalues of
(l). See, for example, lll. The assumption that p and r are positiv€ in the closed
int€rval 10, 1l is also made for det€rmination of error bounds of aDDroximations
obtained in tht  way.

StDrm Liouvill€ problems with singularities arising from p vanishing at one
ofthe endpoints of the interval are not included in the error analyses such as those
mentioned above. It might be expected that for sucb operators th€ order of the
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error bound might be lower than it is for nonsingular operators An example of
such a problem is the Bessel eigenvalue problem

(rI')' - .)' +,ix}, = 0. x € (0, 1),
(2)

. y ( 0 ) : 0 ,  . i ( 1 )  : 0 ,

which has a regular singular poiDt al i. : 0. The results given in Table I in | 4
show that the finite dilTerence probl€m approxjmating (2) which is defined bv
replacing each derivative by the standard ceniral difference approximatioD has
smallest eigenvalue which difrers from the smallest €igenvalue of(2) bv O(r'?") for
0 < 1, < 1 and O(h'z) for r'= 1. We see that Keller's result does not extend to
problem (2) ior 0 < v < L

To study the effect of such a singular point, we limit our study (based on [2])
to approximation of the eigenvalues of 12) by the eigenvalues of the tridiagonal
N x N matrices obtained from the approximations of (2) by the finite difference
problem

r - \  
L r u i  =  d t u i  t + P l u j + t j u j * t : / \ u i ,  j : 1 , . . , N ,

'  '  , n  : 0 ,  a r * r  : 0 ,

with conslant mesh length h = l/(N + 1), N a positive integer, where L' is a
6nite diflerence approximation to the differential operator I given by

(41
1 v 2

L y =  -  ) i "  - ? , ' +  1 r r  '

Note that (2) is the eigenvalue problem for the operator I wilh approprrale
boundary conditions.

A bound on the distance of any given eigenvalue, 1,, of (2) from the set of
eigenvalues ot(3) is given by Theorem I as a constant times th€ max norm ofthe
lruncation error of I and L, with respecl to the eigenfunction associated with ,l.t

when the coefrcients ofrl satisfy certain conditions.
we study three ditrerence operators denoted by Lll), Itz), Ll,t). The first of

thes€ is the standard central difer€nce approximation to L on the mesh We show
that the operators Llt)and I are inconsistent in the seDse that the max norm ollhe
truncation error is Dnbounded as}i J 0 when 0 < v < 1. These lwo operators are
consistent with respecl to a difer€nt norm. but this facl is irrelevant to lhe present

sludy. The truncation error of rft) and I is zero ior any quadratic polvnomial
,(x) = dx'1 + t x + .. but quadratic polynomials yield poor approximations to
ihe eigeniunct ions of l .  which behave l ike x"as xJ0lor0 < r  < I  This is the

rcason that th€ max norm olthe truncation erlor is unbounded. Nevertheless, we

obs€rve that the eigenvalues of the diference problem conv€rge to those of the

dif€r€ntial problem, but at a dower rate than for the nonsingular Sturm Liouville
problems.

The operator tl') is derived in such a way that account is taken ofth€ b€havior
of the eigenfunctions of (2) near the singular point. Th€ coemcients d, p, l are
determin€d such that for any function u(x): axv+'] + bxl+r + cx", the value of

ltz)r(r) is the same as the value of lr(x) at each mesh point, i e., the truncatron
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error ior Ltz)and t is zero lor such functions. The eigenfunctions of (2) ar€ constant
rnultiples ofJ"(,11/'?jr), wher€ ,L is the coresponding eigenvalue, and J"(x) is

k ! I ( v + l + l ) 2 ' + 2 kI
Thus, the operator Lt'z)is constructed so that a better approximation to the eigen-
functions near .j( : 0 is achiev€d than wh€n quadratic polynomials are used.
Furthermor€, away from r : 0, functions ofthe form u(x) : dx"+': + b-{"+ I + cr'
also yield good local approximations to the eigenfunctions. It follows, as it is
shown in S 2, that the max norm of the truncation error is O(r?), and since l,t')
satisfi€s the hypotheses of Theor€m 1, it is a corollary that the eigenvalues of
ll'z) difer irom lbose of I by at most o(h'?).

The operator xL is self-adjoint, but the operator irl;'1) is not. To bercrapproxi-
mate this property of l, the difference operator It' is constructed by finding
coemcienls d, /J, ? such that for any function ofthe form 1)(.,r) : ar"+'? + bjl', the
valu€ ofrtr)u(x) is th€ same as tbe value ofLu(r)at the mesh points and, in addition,
the operator r-Lr3)is self-adjoint. The truncation error of L[3)and, is shown to be
o(h'z),and itisacorollary ofTheorem I that the eigen values of Ll,3) difler from thos€
of L by at most O(r'z).

ln $ 4 numerical results are displayed which illustrate these conclusjons.

2. Truncrtion €rror analysis. The operator tt1) constructed so that
f;')u(x) : Lu(r.) at all mesh points for all quadratic polyDomials , is givcn by

/  I  r \  / .  ' , i  /  |  I  \{5 r  L1 ' r r r , -  l -7+ .n1 , , ,  r  l i , - , ,1 " ,1 , ; -  ln -  tn f , ,\  a  
j = l  A

for any set of numbers {tl.,}. We define the set of functions 9" by
( 2 r

t6 t  .q ,  =  
t l ) i x r  

=a I  c r rx '  ' : r .  ) , r ' ( r  x  eCa l0 .  l l l .

we note that all eigenfunctions of (2) belong to ,tr". Application of Taylor\
lheorem with remainder to any function Jr -.,4" gives

t 2  h 2  h 2
(7) L;"y(.x, - lr(xi) = ---tr ' t() -;),  r-x, i  t  , ;  ,  lJr 'r tr - J' 'ur].24 otn t41n 

j  -  r .  .  N.

w h e r e  \ r .  |  < , t  <  (  <  e  < ) r - r .  A s r l 0 . t h e n x j -  i , ? . s i l h l 6 x e d . i ' s u c h  l h a l
x,  I  0.  Hence. for f r  xed i ,  J j  (xrr  = Orlr ' - rr  and yi ' tx t t  = oth'r  a.  r ,  0.  There-
fore, by (7), w€ have in general that

(8) llt')y(jr) .- rJ,(xj) - = +!(! - t)'(t' 2)to.i-1h-1+ o(h'),

i : 1 , .  , N .  ) ) e 9 " ,

where - denotes the max norm. Since 0 < r < 1, we have that Ltt) is not
consistent with I with respect to the class of functions .4" and in the max norm.

The operator l[2) is constructed so that Lj,'?)r(x) = lu(.x) for r =ir,
j  = 2, . . ,  N, and for al l  I  of  the form {9: r""- ,  + b.x"*r + cx".  Such a
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is self-adjoint. The operator rLl3r is self-adjoint if and only if its coefrcients are
s u c h  t l a t  d . / + r : \ j / \ j + r ) ) r j , j : 1 , . . . , N  1 .  T h e  c o e m c i e n t s  o f  L t r ) a r e
therefore defined by the recunion relations

4  l t t ' 4
P ,  -  . ; - ( v  +  l ) .  ? ,  =  l , l  , , , ( y  r -  l J .

rn \ t l  , t '

t - l  / i - l \ "  4 1  4 l ! + l l( 16 )  d r - "  j  t i  , .  e , -  
\ '  l  l t n f  , *  , a  r ' i * , .

l j  t \ ' ( 2 j  -  D 0  -  t )  4 r '  I  t )  /  r  i '
t , - U - ' /  t 2 j . t j  v ' - , -  r z i  + t n , \ i t  r f  r : :  r u

The first order difrercnce equation for y, in (16) can be used to generate the
sequence of values yj,j : 1, . , N, and this result used to obtain

._ a,=a, j" tn"[ , ,_1; i , r ,  _ir i , )
( t7 )  :

- 4 ' 1 , ; r r [ j - , " i t ' * , ' - , ,  i ; ]  - - , ' ' ] .  j - r . . .  .N .
fh' Ll" .?, z) j

where lq is less than some positive constant K for all values ofj.
We now show that

) 1
n8t  p t :  ; ,  -  -o t t .

The quantity in braces in (17) is equal to the €stimate of the integral of x,"+ rrr"
from x = 0 to r = j by the trapezoid rule applied at each of the j + I equal sub-
divisions of 0 = jr S j. Sinc€ the graph of this positive integrand is concave up-
ward, the estimate is an upper bound on the valu€ of the integral, which h
j1 /(2't + 2) .The yaltte oI the sum in the braces in ( I 7) is equal to the estimate of ahe
integml ofx"+rr" fromr : 'to x = j - * by the midpoint rule applied at each
of thej equal subdivisions of li,j - ;1. Since this positive inregrand is concave
upward, this €stimate is a lower bound on the value ol the integral. Hence, an
upper bound on the quantity in rhe braces in (1?) isjr/(2y + 2) + c/, where lcJ is
less than some positive constant c for all j, Therefore, the two boundi on the vilue
in the braces yield (18).

Suppose J € 4. Then ,(r) = jr- "t(x) is in C'[0, 1]. Ifwe use Taylor's theorem
with remainder to expand ,(J(,. J and u(.r,- ,, abour .r - x,, and use the facr rhar
ldrl  and t/, ]  are derermined so rhat Ll3ta.x'-r - bx't  :  Ltax' ' 'z + ,x') on rhe

t  L z \ r  2 ! _ t  v ( v "  2 )  
- l

LLf'|- Lllrrjr : 
tr 

-;pil 
Lr,lx/ 

.'"-yr',r +::; ''vr.,r 
I

- #{l-Su'.'t:t^'lur', Y,rro
2l-#o'."i.lu't,ir -"'"t04, i: 1,'N,

0e)
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where x.r 1 < ( < t < 4 < rj+ 1 - But from (18), th€ fact that

-  2 1  1 . .  ' ( u r ' j
v t.{il - rr l.{ri - - 

' 
vlx,l - O{ l lxi': '.

^i ^j

and r''(x) : xo(l), we have from (19), after some manipulation, that

llLfht - Llyl-: o(h'z), J  e g , .t20)

q t , J + t  -  t l ,  q / + r , j  -  q j + r ,

l l l

j = 1 , . . , N - 1 ,

j : r ,  , N .

3. Error hounds. W€ define the vector norms I ll, and ll ll- in the usualway'
that is.

/  !  - \ , / ,

A t ,  I  L z i l  z l -  -  m d x r z r :
\  r = 1  l

and a matrix norm subordinat€ to the vector norm I ' 2, for any r€al symmetric

matr ix,4, is

I .4 l, = 1.i.,, .
where,tr.," is An eigenvalue of ,4 with largest magnitude

since the diference €igenvalue problem (3) has homogeneous boundary
conditjons, the coefficients dl and ?rv in (3)can be set equal to zero. Thenthe eigen_
value problem (2) is equivalent to the eigenvalue problem for the N x N tri-
diagonal matrix ,4 whose elements are given by

Theorem 1 is an extension of Kelleis 14, Theorem 5 3 21 result which holds
only for ,4 symmetric.

LEMr"q L Fof an! N x N real tnatrix A, { therc exists a positiue defnite
matl.x D such that DAD-| is qtmhetric, then the eigenaolues ltr)i=1 oJ ,l are
real, and lor any real number 1and any honth)ial N -lettot t,

.*i^,-,rr sll144fi#!L(21)

P/oot Si ce, by hypothesis, B : D.4 D _ r is symmetric, the eigenvalues of '4
are all real. For any nontrivial J,, we set t - (,4 - .tr/)),. Then

(DAD \ - ll)Dy = lB - II)DY : Dr.

l f  , [ isaneigenvalueof ,{,mini^r -, l l  = 0,and hence(21)ho]dsforsuch a,tr.
If ,l is not an eigenvalue of .4, then (B - ,l,l) is invertible and

Dy:\B- 1I) 1Dr. Since, by hypothesis, (B - ,U)- ' is symmetdc, we hav€

Dy, = l l(B - ).1) |  I  ) lDr l ,

s  ' e - { ^  |  , l  D r r l  s  - - +  ,  D r  , .
r  \ ^ r - , , 1 /  

-  m n l ^ x - / t  -

Furthemore, since Dtl , and minrl.Ak - .l are nonzero by hypothesis, we obtain

minl^k .- ,fl a lotl'll Dyllz.
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Bythe dofinition
LEitM 2. F

such that DAD- | synmetlic.
Proof. Il D an, IV,,x .i\r.posi6h{€ ltt6,trit€.di€garal,{qatrix, wirh ,(th diagonal

eleEent denoted

(A

t, ihis istftGsEqealqFdr} llh]iG,oaqtrl€t€s the proofof Ledrma 1.
ary N x N reql fticlEBbtral hdtix A", for ythich tha proilucts
. .. ,:Nt @e Witiaefdre$e\?,niff"s p pasitfue ddnite rtatrix D

i  =  ? . .  , N .

with dr &r ar

We obtain
by ttc toqqwios.

syEmctric. This
Wo donotc

nlr), R13) Jor the
oir,lttitPt a"a

. l -

LEMMA. 3. F
positiae lnteget s

where D = di€g
m-t+ l i - ,@r

Ptool, Frcn

a i - d | L
The value of dl
and honc€,

?=f-=-)';q,**'l
co,fittqtrts c, ald cz sqch 

ry$ ,
c,l 3d3 Sczf,

' , . ... . d'i i' {s 1r.,@4; d $,!ti ttt4Nrhj sssoptoted wult 4, an4
- b  ,

22), wc have

t  I ' *  k + . a .  . , . - - , !  *  { t + a ^
- t l  JJ,ri '= dif 'z- '- l- l ,AE-t; '  r- 2"' N'
arhseEry,pnd wF cbooqe it to be,lqetflLt22u'1 so th4.dZ = 2t,

t  I ' *  k + . a .  . , . - - , !  *  { t + a ^
-l JJ,F;A=qrz-'Il"qE-#' r-2"'N'

(23)

Itr telms,of trh

An application of

Q4)

{urrction [6,p,O3tL, ,

n0+4)- , [ ' (k+4)A@.i .

to (23) diflos

Il

y positivo number, the4 ogoputstion shows tlat E,4D-t is
Dplct€$ h€.proof"of[,r44q2.'
I raj'jo ar-|,y'a -t used in tlE prool of Lernma 2 by Rjtr,
rEicec wha$! qig .v3lwrpfoble$ prc nsocialed v{ith rhose
) rcsp.ctivcly. From (5), (10), andl(I5), we have that
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rj'!.,rho p!odiupqfXiid''1,r(?.r'6J,1F@ + dJis a g lEn con''For

$alrt

ffi, i$,thst

,ft

wh€re {r, is a
(24), we have

mm$er m and

Qs\

for sode Ko >

and whor6 rj - sJ + c;. qeahoDr4i -- trldf|,(r + ,, and o' = K 3{pll + ,i),
aod ttre proof

LBMMA 4,
ulmbet 1, Mil

awpeg g's1tQlallaoh $lpt ,
cr/,,4d,tcaj^,

there exlsts q
sufrcie tly

Ptoof. Fot

Q6) lDylz =

We notc that

rU + a)1.flffil n1 = 3-11!* 5,1,
to zetg esj + 6. Applting this to

' ,i r ft/qfd + ,),'

2 tiiid'l ti;iia*w

"*'ran,* a, s,6rld; ni;il . ,

irn, D.r;(ff .h,l);1 =.1 .,U,tdld'r.= r<o,
"-- {-rf/2 ,t vz

Iteg,RBit

. ,HelasqJifi,h,ir,oheano @aDcrq$b Xd-di, ll > +{<o(N + 1).
thed'wo1h€r/o,.iioDi84v. ,

|lP,[ll, >."o.9il1-- f'". -"'mE

Sordd)).Lh

i l s ,  , w ,

\Wfurt aq eigqtuBke I of (21 dtd
't,!W:i@i - b,!E 01tu4n Iot h

Le4nsa 3 io.9l!tn!FtF+
, tyr= J,(11t2xl,J = 1,. ,Nr0 < I < l ,  ard ar! rc41posit iee
) - diag (dr , . , dr) suoh that thbre exl$s o norneg,atiDe real
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,nhere C is sone positil)e constunt, {i.L\X= | are the eigenwlues of the tridiagonal
matrix A oj co efr cient s of Lh, and y i s the uector \J "(,t1/':x J, .., J"(,lt/'?xn)).

ProoJ: By Lemma2, we know that the hypotheses ofthe theorem are sumcient
for the existence of a positive definite diagonal matrix which symmetrizes ,4.
Lemma 1 implies that

(28) minl^ tl = D(A - 1I):A1,/ Drl2.

By L€mma 3, therc exist positive constants.r and c, such that

( [ ' , 3 d j  1 . , r  z .

But by hypothesis, n + 2 > 0, so that Lemma 4 impli€s

j : 2 ,  . , N .

( 2 e )  D J i  2 > K N ^ + t t ' z ,  ) D \ A  ^ t ) y l , = c , N ^ + u , \ @ - l t D  -

for some constant K independent of i and & sufficiently small.
We combine (28) and (29) to obtain

min A, -  , l  < : l  tA l t ty 
"  

-  CttA -  ) . r) t t - .
K  ' _

This compl€tes the proofofTheorem L
Theorem 1 can be applied to the diflerence operators lt2) and Lf)to obtain

the following corollary.
CoRoLlARy l. The eige aalues l{k\[= | oI the tridiagonal na*ix A oJ coelli-

dents o! Lfj (respectil)ely Lf;t) are such that, for ahy giuen eigenralue ). oI l2l and
Jor h sufrciently snall,

min,Ar - ,1 = O{l ' : ) .

4. Numerical experiments. In the numerjcal experiments conducted in
relation to this study, the smallest eigenvalue Ar of the three difrerence operators
Lrtt, Ll"', and Lltt werc computed with error no greater than l0-3. ln Tables I
througb 3, th€ amount these approximations differed from the small€st eigenvalue
,11 of (l) is given for each operator for ! : *, j, i, and N + | = l/h = 4, 8, 16, 32,
64, 128, For any two successive values of N + 1, a valu€ ofthe experim€ntal order
oi convergence (EOC) of the error as given by log(e{N*rrr/cN+r)/log2, where
?x* ! : l,l, - Arl, is also tabulated. The experimental ord€r of convergence is
the power of I by which the error is decreased, computed from th€ values ofthe
error al  a given value of l  and halI thar value.

Thehypothes€sofTheorem I are satisfied whenLi isany ofthethree operators
discussed in S 2. Hence, we expect an error bound for the €igenvalues ol these
operators and any eigenvalues of(l) to be given by Theorem L

Since by (8), Ll!)and L are nol consistent with resp€ct to the class offunctions
,4, which contains the eigenfunctions of(1), Theor€m 1do€snot imply convergence
olthe eigenvalues ofl,t')to those ofl. The results displayed in Table I indicate that
such convergence does occur in the case of the smallest eigenvalue of (1), with
apparent order of convergence 2!. Such behavior ofthe eigenvalues ofLll)can be
verified by a technique of weinberger [7].

Corollary 1 isillustrated by the values in Tables 2 and 3.
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l6

32

64

128

8

l6

32

64

128

E

l6

32

ta

Tr!I.32
otdq' d co tt'lstr,4. kr thr shl4tP't .t|.wv//,'.s d L\'t o$n L

I L

T!!LE 3
otd*r olco,ersqce lot th. wtkr', .h*Mtu$ o! Ll:'

,  - l

2.80

-3.12

0,?l

715

2,00

2.00

2.00

2.00

2.00

1.9E

2.00

100

2.00

2.00

i

- 3,E28E - r I

-6.9SE' * 2 ]

- 1,0058 - 2

9!04 - 5 l.

€.096r - 4

49468 - 4

-49704 - I

- \.262d' - 1

-3.t678 - 2

-1,925E - 3

-L,gE E - 3

-49548 - 4

1.98

1p9

2.p0

2p0

2$0

-6.9154 - l

- t .7308 -  I

-43318 - 2

- l.0E4r - 2

-6.1198 - 4

193

l.9E

2.00

2.00

2.00

- 7.510E - r
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