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1. INTRODUCTION

In this paper we consider the finite difference system

4 + 1) (uy — u,/2°)[382 = Auy ,

(L yl=(+d) 2 (j y1+0+D)

(1)
=Auw;, j=2,.,N,

Hl] s 03 LI':J'\?'J.-l = 0)

where N is a fixed positive integer, & = 1/(N -+ 1) and 0 <<v << 1. This
system is a finite difference analog to the Bessel differential system of order »:

— " =y Lty =Xy, ae(0,1);
»0)=0, y(1)=0.

The eigenvalues of (1) have been shown to converge to the eigenvalues of (2)
like A2 [3, 4].

Forv = 0, (1) is similar to the system treated by Gergen et al. [5, 6]. Some
of their results are shown to hold for system (1) when 0 << v < 1. Representa-
tions are obtained for the exact eigenvalues and eigenfunctions of systems of
the form (1), using a technique similar to one employed by Boyer [2] to treat
the case v = 0.

It is convenient for our purposes to consider the matrix eigenvalue problem
equivalent to (1). The N x N tridiagonal matrix 4, , which has eigenvalues
and eigenvectors identical to the eigenvalues and eigenfunctions of (1) has
nonzero elements given by the coefficients of the scheme (1).

@

* Work on this paper was supported in part by a grant from Research Corporation.
The results reported here first appeared in the author’s doctoral dissertation [4] under
Professor Robert E. Lynch.
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2. PROPERTIES OF THE EIGENVALUES

We first consider some properties of the eigenvalues of (1) and find an
upper bound for these eigenvalues.

Taeorem 1. The system (1) has N eigenvalues which are all real, positive,
and bounded above by 4(N -+ 1)%

Proof. We first show that the cigenvalues of Ay , = (a; ;) are real and
that A, has a complete set of eigenvectors by exhibiting a nonsingular
diagonal matrix D such that DA, D1 is symmetric. With d; denoting the
diagonal element in the 7-th row of D, choose d; = 1 and

drs = (@ 101/ Ca 1) P k=1,.,N—1

Then, since

Gy _ (R \FTREvER
_(k -+ I) [ k=2, ,N—1,

b
i1,k

cach diagonal element of D is well defined and is positive for all v << 2. By
direct calculation, DA, D~! is symmetric and tridiagonal.

Next we show that the eigenvalues of A are positive. We introduce the
matrix Cy, = Dy, 4y ,Dy, where Dy, is the N X N diagonal matrix
defined by

D"V"' = dlag(L rt NG
The nonzero elements of Cy, , are

=40+ 13k o= — 4@+ 1)[30,
o = — [1 + @ + DR, . 3)
copr=—[1 — @+ DR, =2, k=2.,N.

We recall that & = 1/(N + 1). The matrix Cy, is irreducibly diagonally
dominant, so that it follows that Cy, , is nonsingular and all of its eigenvalues
have positive real part [8, Theorem 1.8]. Hence, since it has been shown
above that the eigenvalues are real, they are each positive.

We now obtain a bound on the cigenvalues of (1) by obtaining a bound on
the eigenvalues of C . If v << 1, then cach row sum of Cy , is less than or
equal to 4/h* = 4(N -+ 1)?, proving Theorem 1 for 0 <v << f.
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In the case 1 <v < 1, the Sturm sequence, {f;}, for the tridiagonal
matrix Cy , is defined by

fox) =1,
fi®) = (v — e1,1) fol®), 4)
Jra(®) = (8 — craa 1) ful®) — Cres1, k6%, 141 Srma (%), k=1,.,N—1.

The number of sign changes in the sequence { f;(x)} is equal to the number
of eigenvalues of Cy , that exceed x [1, p. 203]. By induction we prove that
elements of the Sturm sequence have the same sign when 3 <v <1 for
x = 4(N + 1), in which case the sequence (4) becomes

fo=1, fi=42 —v)fol3H,

; ®)
fon = 26eft — (1 + %i—k) o R

Observe that
fr = 4@ — V)30 > 1[I = fylI.

Assume, for a given value of &, that f, > f;_;/h%. Then a computation of
fre1, using (5), gives

R
Frrn > 26l — (14 =) il > fill*

where the first inequality follows from the induction hypothesis and the
second from the fact that » > 1. Hence, we have shown that f..; > fi/h?,
k—0,.., N — 1, and therefore, all eigenvalues of Cy , are smaller than
4(N - 1)% Since the eigenvalues of Cy , are identical to those of (1), the
proof of Theorem [ is complete.

We note that in the proof given above, v could be any value in the interval
0 < » < 3; however, we are only interested in the results for 0 <v < I.

3, ExacT REPRESENTATION OF THE SOLUTIONS
We denote by P,%(x) and O,(x) the associated Legendre functions of degree
7 and order s of the first and second kinds, respectively. This pair of functions

is linearly independent, and linear combinations of them yield the complete
solution to the differential equation

2
(1 —x“)%—lrj—{-}- [r(r + 1) — ¥(1 —a?)]y =0, xe(—1,1).
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Many properties of these functions are given by Robin [7]. In particular, two
recurrence relations which are useful in obtaining representations for the
eigenfunctions of (1) are given in Lemma 1.

Lemva 1 [7, pp. 163-165]. Let Y,5(x) be any linear combination of the
two functions P,*(x) and Q,%(x). Then

(s — 7 — 1) Vi(s) + 2r + 1) a¥5@) — ¢ +1) Yia(®) =0,  (6)

@ — L8

1) sV + (s —r — D) Vi =0, (1)

for — 1 < x < 1 and any real values of v and s.

Tt is well known that P,*(x) and Q,%(x) are independent with respect to the
variable x for r and s fixed, but we need to establish that they are independent
with respect to 7 for x and s fixed. This is done in the proof of Theorem 2.

TueoreM 2. The general solution of (6) is
Vi) = GPA(x) + GO (),

where Cy and C, are arbitrary constants and for any ry, r =71y, 1o+ L....

Proof. Since (6) is a second-order lincar homogeneous difference equation
with independent variable 7, we need to show only that P,%(x) and Q,%(x) are
linearly independent as functions of 7. We fix s and & = x; . If P, (x,) and
0,%(x,) were not linearly independent for r = 7o, 7 + 1,..., then

P:n:~k(""o) = aQin-ek(xn) fork =0, 1,...,

and some constant a. Then by (7), it would follow that dP} dx = adQ; [dx
at the point & = x, . But, by definition, P} and O} are solutions of the same
second-order linear homogeneous differential equat:on on (— 1, 1) so that
P; (¥) = aQ; () for all in (— I, 1). But this contradicts the fact that they
are linearly mdcpendent with respect to x. This completes the proof of
Theorem 2.

Set s = — vand r = j — } in (6) and, for any = in (0, ), and any Y77,
we define the function S; by

Sj(w) = 'Y ;2 (cos w).
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We now show that with proper choices of ¥;”; and w, we obtain all solutions
of (1). With this substitution, (6) becomes

— (= D71 =@+ )] Sialw) + 277 cos wSj(w)

g . (8)
—( + D71+ @+ DI Spiaw) = 0.

A rearrangement of (8) and restricting j to integral values yield that S;(w) is
the general solution of

e e 02 Al 2 g e U SIS
_(j—]) iz HJ’“F‘”‘(;‘ 1) 72 L

L)
= (G sint 5 -
This last system is identical to (1) for j = 2,..., N if
A = (4sin? } w)/2.

The function Y7, in the definition of S; contains two arbitrary constants,
one of which can be determined such that Sj(w) satisfies (1) for j = 1. Then,
since Sy(w) is obviously zero, the only remaining property needed for S;(w)
to be a solution to (1) is that Sy ;(w) = 0. For any 4 in (0, 4(V -+ 1)?), there
exists an w in (0, 7) such that

A =4(N -+ 1)?sin? § w.

By Theorem 1, all the eigenvalues 4, of the problem (1) lie in (0, 4(IV 4 1)?),
SO any c1gcnfunctmn of (1) can be represented by Sj(w;), j = 0,.. N Skl
where §; is defined by

Sj(w) = jICP;i(cos ) + C,0;i(cos w)].

C; and C, are related constants, not both zero, one of which is arbitrary,
while the other is determined in such a way that Sj(w,) satisfies (1) forj = 1.
The value of w, 1s related to the k-th eigenvalue of (1) by

wp = 2 sin 1[4 2(N + 1)].
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