Bessel Difference Systems of Fractional Order*

HERBERT L. DERSHEM

Department of Mathematics, Hope College, Holland, Michigan 49423

Submitted by Garrett Birkhoff

1. Introduction

In this paper we consider the finite difference system

$$4(\nu+1) (u_{1} - u_{2}/2^{\nu})/3h^{2} = \Lambda u_{1},$$

$$-\left(\frac{j}{j-1}\right)^{\nu} \frac{1 - (\nu+\frac{1}{2})/j}{h^{2}} u_{j-1} + \frac{2u_{j}}{h^{2}} - \left(\frac{j}{j+1}\right)^{\nu} \frac{1 + (\nu+\frac{1}{2})/j}{h^{2}} u_{j+1}$$

$$= \Lambda u_{j}, \quad j = 2, ..., N,$$

$$u_{0} = 0, \quad u_{N+1} = 0,$$

$$(1)$$

where N is a fixed positive integer, h = 1/(N+1) and $0 < \nu < 1$. This system is a finite difference analog to the Bessel differential system of order ν :

$$-y'' - y'/x + v^2y/x^2 = \lambda y, \quad x \in (0, 1);$$

$$y(0) = 0, \quad y(1) = 0.$$
 (2)

The eigenvalues of (1) have been shown to converge to the eigenvalues of (2) like h^2 [3, 4].

For $\nu=0$, (1) is similar to the system treated by Gergen *et al.* [5, 6]. Some of their results are shown to hold for system (1) when $0<\nu<1$. Representations are obtained for the exact eigenvalues and eigenfunctions of systems of the form (1), using a technique similar to one employed by Boyer [2] to treat the case $\nu=0$.

It is convenient for our purposes to consider the matrix eigenvalue problem equivalent to (1). The $N \times N$ tridiagonal matrix $A_{N,\nu}$ which has eigenvalues and eigenvectors identical to the eigenvalues and eigenfunctions of (1) has nonzero elements given by the coefficients of the scheme (1).

^{*} Work on this paper was supported in part by a grant from Research Corporation. The results reported here first appeared in the author's doctoral dissertation [4] under Professor Robert E. Lynch.

2. Properties of the Eigenvalues

We first consider some properties of the eigenvalues of (1) and find an upper bound for these eigenvalues.

Theorem 1. The system (1) has N eigenvalues which are all real, positive, and bounded above by $4(N+1)^2$.

Proof. We first show that the eigenvalues of $A_{N,\nu}=(a_{i,j})$ are real and that $A_{N,\nu}$ has a complete set of eigenvectors by exhibiting a nonsingular diagonal matrix D such that $DA_{N,\nu}D^{-1}$ is symmetric. With d_i denoting the diagonal element in the i-th row of D, choose $d_1=1$ and

$$d_{k+1} = (a_{k,k+1}/a_{k+1,k})^{1/2} d_k$$
, $k = 1,..., N-1$.

Then, since

$$\frac{a_{k,k+1}}{a_{k+1,k}} = \left(\frac{k}{k+1}\right)^{2\nu-1} \frac{k+\nu+\frac{1}{2}}{k-\nu+\frac{1}{2}}, \qquad k=2,...,N-1,$$

each diagonal element of D is well defined and is positive for all $\nu < \frac{3}{2}$. By direct calculation, $DA_{N,\nu}D^{-1}$ is symmetric and tridiagonal.

Next we show that the eigenvalues of A are positive. We introduce the matrix $C_{N,\nu}=D_{N,\nu}^{-1}A_{N,\nu}D_{N,\nu}$ where $D_{N,\nu}$ is the $N\times N$ diagonal matrix defined by

$$D_{N,\nu} = \text{diag}(1, 2^{\nu}, ..., N^{\nu}).$$

The nonzero elements of $C_{N,\nu}$ are

$$c_{1,1} = 4(\nu + 1)/3h^2, c_{1,2} = -4(\nu + 1)/3h^2,$$

$$c_{k,k+1} = -\left[1 + (\nu + \frac{1}{2})/k\right]/h^2, k = 2,..., N - 1,$$

$$c_{k,k-1} = -\left[1 - (\nu + \frac{1}{2})/k\right]/h^2, c_{k,k} = 2/h^2, k = 2,..., N.$$
(3)

We recall that h = 1/(N+1). The matrix $C_{N,\nu}$ is irreducibly diagonally dominant, so that it follows that $C_{N,\nu}$ is nonsingular and all of its eigenvalues have positive real part [8, Theorem 1.8]. Hence, since it has been shown above that the eigenvalues are real, they are each positive.

We now obtain a bound on the eigenvalues of (1) by obtaining a bound on the eigenvalues of $C_{N,\nu}$. If $\nu\leqslant\frac{1}{2}$, then each row sum of $C_{N,\nu}$ is less than or equal to $4/h^2=4(N+1)^2$, proving Theorem 1 for $0<\nu\leqslant\frac{1}{2}$.

560 DERSHEM

In the case $\frac{1}{2} < \nu < 1$, the Sturm sequence, $\{f_j\}$, for the tridiagonal matrix $C_{N,\nu}$ is defined by

$$f_0(x) = 1,$$

$$f_1(x) = (x - c_{1,1}) f_0(x),$$

$$f_{k+1}(x) = (x - c_{k+1,k+1}) f_k(x) - c_{k+1,k} c_{k,k+1} f_{k-1}(x), \qquad k = 1,..., N-1.$$
(4)

The number of sign changes in the sequence $\{f_j(x)\}$ is equal to the number of eigenvalues of $C_{N,\nu}$ that exceed x [1, p. 203]. By induction we prove that elements of the Sturm sequence have the same sign when $\frac{1}{2} < \nu < 1$ for $x = 4(N+1)^2$, in which case the sequence (4) becomes

$$f_0 = 1, f_1 = 4(2 - \nu) f_0 / 3h^2,$$

$$f_{k+1} = 2f_k / h^2 - \left(1 + \frac{\frac{1}{4} - \nu^2}{k^2 + k}\right) f_{k-1} / h^4, k = 1, ..., N - 1.$$
(5)

Observe that

$$f_1 = 4(2 - \nu)/3h^2 > 1/h^2 = f_0/h^2$$
.

Assume, for a given value of k, that $f_k > f_{k-1}/h^2$. Then a computation of f_{k+1} , using (5), gives

$$f_{k+1} > 2f_k/h^2 - \left(1 + \frac{\frac{1}{4} - \nu^2}{k^2 + k}\right) f_k/h^2 > f_k/h^2,$$

where the first inequality follows from the induction hypothesis and the second from the fact that $\nu > \frac{1}{2}$. Hence, we have shown that $f_{k+1} > f_k | h^2$, k = 0,..., N-1, and therefore, all eigenvalues of $C_{N,\nu}$ are smaller than $4(N+1)^2$. Since the eigenvalues of $C_{N,\nu}$ are identical to those of (1), the proof of Theorem 1 is complete.

We note that in the proof given above, ν could be any value in the interval $0 < \nu < \frac{3}{2}$; however, we are only interested in the results for $0 < \nu < 1$.

3. Exact Representation of the Solutions

We denote by $P_r^s(x)$ and $Q_r^s(x)$ the associated Legendre functions of degree r and order s of the first and second kinds, respectively. This pair of functions is linearly independent, and linear combinations of them yield the complete solution to the differential equation

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + [r(r+1) - s^2/(1-x^2)]y = 0, x \in (-1,1).$$

Many properties of these functions are given by Robin [7]. In particular, two recurrence relations which are useful in obtaining representations for the eigenfunctions of (1) are given in Lemma 1.

Lemma 1 [7, pp. 163–165]. Let $Y_r^s(x)$ be any linear combination of the two functions $P_r^s(x)$ and $Q_r^s(x)$. Then

$$(s-r-1)Y_{r+1}^{s}(x) + (2r+1)xY_{r}^{s}(x) - (s+r)Y_{r-1}^{s}(x) = 0, (6)$$

$$(x^{2}-1)\frac{dY_{r}^{s}(x)}{dx}-(r+1)xY_{r}^{s}(x)+(s-r-1)Y_{r+1}^{s}(x)=0, \qquad (7)$$

for -1 < x < 1 and any real values of r and s.

It is well known that $P_r^s(x)$ and $Q_r^s(x)$ are independent with respect to the variable x for r and s fixed, but we need to establish that they are independent with respect to r for x and s fixed. This is done in the proof of Theorem 2.

THEOREM 2. The general solution of (6) is

$$Y_r^s(x) = C_1 P_r^s(x) + C_2 Q_r^s(x),$$

where C_1 and C_2 are arbitrary constants and for any r_0 , $r=r_0$, $r_0+1,...$

Proof. Since (6) is a second-order linear homogeneous difference equation with independent variable r, we need to show only that $P_r^s(x)$ and $Q_r^s(x)$ are linearly independent as functions of r. We fix s and $x=x_0$. If $P_r^s(x_0)$ and $Q_r^s(x_0)$ were not linearly independent for $r=r_0$, $r_0+1,...$, then

$$P^s_{r_0+k}(x_0) = aQ^s_{r_0+k}(x_0)$$
 for $k = 0, 1, ...,$

and some constant a. Then by (7), it would follow that $dP_{\tau_0}^s/dx = adQ_{\tau_0}^s/dx$ at the point $x = x_0$. But, by definition, $P_{\tau_0}^s$ and $Q_{\tau_0}^s$ are solutions of the same second-order linear homogeneous differential equation on (-1, 1) so that $P_{\tau_0}^s(x) = aQ_{\tau_0}^s(x)$ for all x in (-1, 1). But this contradicts the fact that they are linearly independent with respect to x. This completes the proof of Theorem 2.

Set $s = -\nu$ and $r = j - \frac{1}{2}$ in (6) and, for any w in (0, π), and any $Y_{j-\frac{1}{2}}^{-\nu}$, we define the function S_j by

$$S_j(\omega) = j^{\nu} Y_{j-\frac{1}{2}}^{-\nu}(\cos \omega).$$

562 DERSHEM

We now show that with proper choices of $Y_{j-\frac{1}{2}}^{-\nu}$ and ω , we obtain all solutions of (1). With this substitution, (6) becomes

$$-(j-1)^{-\nu} \left[1 - (\nu + \frac{1}{2})/j\right] S_{j-1}(\omega) + 2j^{-\nu} \cos \omega S_{j}(\omega) -(j+1)^{-\nu} \left[1 + (\nu + \frac{1}{2})/j\right] S_{j+1}(\omega) = 0.$$
(8)

A rearrangement of (8) and restricting j to integral values yield that $S_j(\omega)$ is the general solution of

$$-\left(\frac{j}{j-1}\right)^{\nu}\frac{1-(\nu+\frac{1}{2})/j}{h^2}u_{j-1}+\frac{2}{h^2}u_j-\left(\frac{j}{j+1}\right)^{\nu}\frac{1+(\nu+\frac{1}{2})/j}{h^2}u_{j+1}$$

$$=\left(\frac{4}{h^2}\sin^2\frac{\omega}{2}\right)u_j.$$

This last system is identical to (1) for j = 2,..., N if

$$\Lambda = (4 \sin^2 \frac{1}{2} \omega)/h^2$$
.

The function $Y_{j-\frac{1}{2}}^{-\nu}$ in the definition of S_j contains two arbitrary constants, one of which can be determined such that $S_j(\omega)$ satisfies (1) for j=1. Then, since $S_0(\omega)$ is obviously zero, the only remaining property needed for $S_j(\omega)$ to be a solution to (1) is that $S_{N+1}(\omega)=0$. For any Λ in $(0, 4(N+1)^2)$, there exists an ω in $(0, \pi)$ such that

$$\Lambda = 4(N+1)^2 \sin^2 \frac{1}{2} \omega.$$

By Theorem 1, all the eigenvalues A_k of the problem (1) lie in $(0, 4(N+1)^2)$, so any eigenfunction of (1) can be represented by $S_j(\omega_k)$, j=0,...,N+1, where S_j is defined by

$$S_{j}(\omega) = j^{\nu} [C_{1} P_{j+\frac{1}{2}}^{-\nu} (\cos \omega) + C_{2} Q_{j+\frac{1}{2}}^{-\nu} (\cos \omega)].$$

 C_1 and C_2 are related constants, not both zero, one of which is arbitrary, while the other is determined in such a way that $S_j(\omega_k)$ satisfies (1) for j=1. The value of ω_k is related to the k-th eigenvalue of (1) by

$$\omega_k = 2 \sin^{-1}[\Lambda_k^{\frac{1}{2}}/2(N+1)].$$

REFERENCES

- I. S. Berezin and N. P. Zhidkov, "Computing Methods," Vol. 2, Pergamon, Elmsford, NY, 1965.
- 2. R. H. Boyer, Discrete Bessel functions, J. Math. Anal. Appl. 2 (1961), 509-524.

- 3. H. L. Dershem, Approximation of the Bessel eigenvalue problem by finite differences, SIAM J. Numer. Anal. 8 (1971), 709-716.
- H. L. Dershem, "Approximation of Bessel's Differential Operator of Fractional Order by Finite-Difference Operators," Ph.D. Dissertation, Purdue University, Lafayette, IN, 1969.
- J. J. Gergen, F. G. Dressel, and G. B. Parrish, Bessel difference systems of zero order, J. Math. Anal. Appl. 13 (1966), 102–117.
- J. J. Gergen, F. G. Dressel, and G. B. Parrish, Expansions for Bessel difference systems of zero order, J. Math. Anal. Appl. 20 (1967), 269-298.
- L. Robin, "Fonctions Sphériques de Legendre et Fonctions Sphéroidales," Vol. 2, Gauthier-Villars, Paris, 1958.
- R. S. VARGA, "Matrix Iterative Analysis," Prentice-Hall, Englewood Cliffs, NJ, 1962.