'r

"/
.://////

THE Hﬁff SOCIHY !N COMPUHNG

The Proceedings of the
First AustralaS|an Conference on
Computer Science Education

Sponsored by the
ACM Special Interest Group on
Computer Science Education

University of Sydney, Australia
July 3-5, 1996

Symposium Chair: Alan Fekete
University of Sydney

Program Chair: John Rosenberg
University of Sydney

Edited by: John Rosenberg
University of Sydney

Data Structures with Ada Packages, Laboratories, and Animations

Herbert L. Dershem, Hope College, Holland, M1, dershem@cs.hope.edu

Wendy L. Barth, University of Illinois, Champaign-Urbana, IL,
Cheri J. Bowsher, Indianapolis Life Insurance Company, IN

Darrick P. Brown, Hope College, Holland, MI, dbrown@cs.hope.edu

Introduction

The data structures course is one of the oldest and most sta-
ble courses in the computer science curriculum. It has been
present in all model curricula and curriculum recommenda-
tions from 1967 on, and its content has remained remark-
ably stable.

Over the history of the data structures course, many tools
and approaches have been introduced and effectively
employed. This paper describes a course that was designed
using a combination of three such tools: the Ada program-
ming language, algorithm visualization and animation, and
laboratories with experimental algorithm analysis. The tools
developed and used are described in detail.

The Ada Programming Language

The use of Ada in the data structures course was pioneered
by Feldman [3] and more recently advocated by Silver [6].
Several very good data structures textbooks are based on the
Ada language including Feldman [2], Weiss [9], Hillam [4],
and Stubbs and Webre [8].

The advantages of Ada in a data structures course include

the following:

« Packages and private types allow the complete imple-
mentation of abstract data types including encapsulation
and the separation of specification from implementation.

+ Generics enable students to work at a higher level of
abstraction when constructing abstract data types.

« Exception handling can be included within abstract data
types to further enhance encapsulation.

In the course described here, students were provided with a
library of Ada packages which they used in their program-
ming projects and laboratory exercises. This enabled the
students to use the data structures in their own programs

Permission to make digitallhard copy of all or part of this work for personal or
* classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title
of the publication and its date appear, and natice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee.
©1936 ACM 0-89791-845-2/96/0007..53.50 :

@cs.uinc.edu

without needing to implement them in detail. The code from
the packages was available for students to examine and was
used in the class to aid in the understanding of data structure
and algorithm implementation.

Packages that were provided in the library are:
» AVL Trees

» Rational numbers

+ Unlimited precision integers
+ Binary search trees

» Binary heaps

» Leftist heaps

Linked lists

Queues

Stacks

B-trees

» Splay trees

Some of these packages were adapted from those found in
Weiss [9].

Algorithm Visualizations and Animations

Algorithm visualization and animation has been used suc-
cessfully in data structures courses for some time. Examples
are found in Brown [1] and Naps [5]. Tools have been
described which facilitate the development of these anima-
tions. The tool chosen for use in the present project is
XTango (7).

In the present data structures course, visualizations and ani-
mations are used for both classroom demonstration and lab-
oratory exercises. The animations are intended to enhance
student understanding of algorithms, particularly since the
students do not write code to implement the algorithms in
most cases. Many animations illustrate the algorithm
through an animation that is viewed simultaneously with the
Ada code which implements the algorithm. Ada statements
in the code display are highlighted as their action is ani-
mated.

Many animations are provided with the distribution of
XTango. Some of these were found to be appropriate for use
in the data structures course, often with minor modifica-
tions. In addition, other animations were developed as a part
of the course development project. Those developed were:

« Linked lists with insertion, deletion, and search

32

Infix to postfix expression conversion
Binary search tree insertion and deletion
AVL tree rotation

AVL tree insertion

Splay tree rotation

B-tree insertion

L] L] L] L] L] L]

Example Animations

AdaVision is the name given to the algorithm animation
system developed for this project. Adavision combines Ada
code with dynamic images to serve as a teaching tool for
data structure courses taught in Ada. Using the algorithm
animation package XTango, animations are created so stu-
dents may view the connection between Ada code and the
action of algorithms on data and data structures. The Ada
code associated with each algorithm appears in the display
area of XTango. In some cases, procedures which are not
explicitly displayed are used in order to simplify the code.

The structures and data involved in an algorithm are repre-
sented by images. These images move as the result of inter-
esting events, such as the insertion of a node into a tree or
the movement of a link in a rotation. At the beginning of
each animation, the first line of Ada code is highlighted by a
rectangular image. Succeeding lines of code are highlighted
as they are executed. The user observes the image move-
ment taking place in conjunction with the code highlighting.
Two of the animations, Linked List and AVL Tree Rota-
tions, are described below

Linked List

The list animation demonstrates how inserts, deletes, and
finds are done on a linked list with a dummy header node.
Insert may be done at any point within the list, delete will
remove all occurrences of a particular value from the list,
and find will search for the first occurrence of a value in the
list.

XTango’s animation window appears, and after the ‘run ani-
mation’ button is clicked, all interaction with the user
occurs in the shell window. A menu is displayed there, giv-
ing the user the options of inserting a node, deleting a node,
finding a node, or quitting the application.

If the user chooses to insert a node, s/he will be prompted
for the value to be inserted, and then prompted for the
desired place to insert the node: either at the start of the list,
the end of the list, or after another user-specified node. If the
user desires to delete a node, s/he will be prompted for the
value to be deleted, and informed that all nodes containing
the value will be deleted. If the user chooses to find a value
in the list, s/he will be prompted for the value to find, and
informed that only the first occurrence of the value will be
found. After all information for a particular operation has
been gathered from the user, the animation begins.

33

In an insert, an external pointer finds the node to be inserted
after, and a new node is drawn and added to the list. In a
delete, an external pointer finds both the node to be deleted
and the node immediately before it prior to deleting the
node. In a find, a comparison is animated between each ele-
ment of the list and the find value. The find value appears in
the lower left corner of the display area, and as each element
is visited, the find value moves next to the value of the node.
If the values match, the images flash. If they do not match,
the find value returns to its place in the corner.

Nodes are represented by divided rectangles. The left half of
the rectangle contains the value of the node, while the right
half holds a pointer to the next node. Any external pointers,
such as those used to find a certain node in the list, appear
and move along the bottom of the list image. The code cor-
responding to each operation appears at the top of the ani-
mation window, and after an operation is completed, it is
erased. The original list consists of a pointer named HEAD
that points to adummy header, that is, an empty node whose
pointer field points to NULL. As lists become long, they
will move off the display area to the right. The images can
still be viewed by using the arrow buttons on the left side of
the XTango window

Prev_Cell := Find(input_value, L):
Temp := new Hode” (X. Prev_Cell.Next):
Prev_Cell.Hext := Temp;|

HEAD

/ HULL

1 o {4

Prev_Cell T

Temp

Figure 1. Inserting a node at the start of a linked list

AVL Tree Rotation

AdaVision’s ‘avirotat’ demonstrates single and double rota-
tions of an AVL tree upon the insertion of an element. The
user may view any of four rotations as many times as
desired by choosing an option number in a shell window
after clicking XTango’s ‘Run Animation’ button.

In the single left rotation, there exist nodes A and B, where
A is the original oot of the tree and B, A’s left child, is the
root which results from the rotation. The tree is filled in by
three triangles which represent subtrees of depth ‘n’. The

double left rotation consists of three node images: A, the
original root; B, A’s left child; and C, which is B’s right
child and the new root. In this case, the tree is filled by two
triangular subtrees of depth n, and two triangular subtrees of
depth ‘n+1’. The nodes in each rotation are connected to
subtrees by way of ‘links,” which serve as pointers to nodes
in the tree. The single right and double right rotations are
mirror images of the left rotations.

The element is represented by a small, orange triangle
which first appears in the top right-hand comer of the
XTango window. After working its way down the tree in
standard binary search tree fashion, the element attaches, or
inserts, itself to the bottom of a subtree, potentially causing
the tree to become unbalanced. The element is inserted into
the left-most subtree of the pivot for the single left rotation,
the right-most subtree for the single right rotation, the right
subtree of the left child of the pivot for the double left rota-
tion, and the left subtree of the right child of the pivot for
the double right rotation.

Each rotation also has its own display of Ada code. As each
line of code is highlighted, the appropriate link movement is
performed. Once all links are in position, the rotation
occurs. The image at each node moves to its new position in
the balanced tree and the links are redrawn accordingly.

Double_Right Rotation

A
Figure 2. The repositioning of links due to the insertion of
an element into a subtree.

B.Left := C.Right:

Root ::'l;;

Double_Right Retation

B.Left := C.Right:

C.Right := B: c

A.Right 1= C.Left /’\
eft 3= A

Root := Cz| A B

Figure 3. A balanced AVL tree following the performance
of a double right rotation.

The Laboratories

There are eight laboratory exercises written for this course.
Some of these require the students to use a package called
THREADS (Test Hamess for the Repeated Execution of
Ada on Data Structures). THREADS is described in the fol-
lowing section.

Titles and brief descriptions of the laboratories are given
below.

1. Writing an Ada program
The students are introduced to the Ada language by writ-
ing a program to compute the nth power of 2 using inte-
gers and floats, They are also required to write a
program which uses Newton’s method to calculate the
square root of 2. Students observe the limitations of size
and accuracy with Ada’s built-in numeric types.

2. Using Ada Packages
Students use a package called Big_Integer to obtain
results for larger powers of 2. They also use a rational

number package to obtain more accurate results for the
square root of 2.

3. Using Generic Packages
Students use a generic rational package and instantiate it
for Big_Integer to increase the accuracy of the square
root of 2 calculation.

4. Big Oh Sampling
Five algorithms are provided in Ada programs with vari-
ous Big Oh values. Students run these through
THREADS to observe their timing behavior both in tab-
ular and graphical form.

th

Big Oh Determination
Students work with 10 algorithms whose big Oh behav-
iors they must analyze and observe.

6. Stacks and Queues
Students run animations in XTango to observe and ana-
lyze the behavior of a stack (Infix to Postfix conversion)
and a queue (Post Office Queue Simulation).

7. Comparison of AVL and Binary Search Trees
Students use packages for AVL trees and Binary Search
trees to observe and compare their behaviors in terms of
search/insertion times and average depth of an element
in the tree. THREADS is used to perform the analysis on
the observations.

8. Sort Comparisons
THREADS is used to compare the behavior of five dif-
ferent sort algorithms over various data distributions.

THREADS: A Data Structures Laboratory Test Harness

Many experiments that are performed in the laboratories
involve running tests on algorithms that have been imple-
mented using Ada packages. These tests produced results

that can be measured and analyzed. Working in the lab gives
students the chance to be more directly involved in their
Jearning, increasing the amount of information they retain.

Some of the Ada packages will be written by the students
themselves, but more are provided by the instructor. In this
way, the students are exposed to more data structures and
algorithms. Students will spend their time seeing and expe-
riencing the effects of algorithms instead of actually coding
the algorithms and corresponding data structures. This

should increase their ability to analyze the effectiveness
and/or efficiency of different approaches to a problem.

THREADS (Test Harness for Repetitive Experiments on
Ada Data Structures) is a tool that can be used to run tests
" on data structures and algorithms, reporting back to the user
some type of the measurement of the test. The tests are
‘black box’ programs that are implemented separately, and
may be tested and run separately as well. An abbreviated
manual for THREADS follows.

The basic idea behind THREADS is illustrated by the fol-
lowing chart

Data Set

L]

Figure 4. Configurations for THREADS

Black Box

—

THREADS

THREADS generates a data set based on information given
by the user. This data set is used by a black box to run one
experiment. Upon the black box’s completion, it returns to
THREADS the sample size of the data set and an integer
measurement of the test. The measurement will be included
in a table that keeps track of each experiment the user runs.

Running THREADS brings up the interface shown in Fig-
ure 5. All information needed for the data set is input in the
appropriate places by the user. The parameters the user may
designate are as follows:

Method: The black box to use for the experiment

Write to File: The named file where the data set is
stored. If no file is designated, a

temporary default file will be used.

Write Path: The path to the directory where all data and
files will be written.

Use File: The path and name of a data set to be used in
place of a file generated by THREADS.

Sample Size: The number of elements in the data set.

35

Sample Distribution: The statistical probability distri-
bution used to generated the random data set.

Sample Order: The extent of ordering imposed on ele-
ments in the data set. The default settings are for a 100
element, completely unsorted data set generated ran-
domly from a uniform random distribution.

Figure 5. THREADS Window

Method: The black box process is spawned by the
THREADS process. When THREADS executes a black
box, it gives the black box a data set generated by
THREADS. It then waits for the black box to return. When
the black box returns, THREADS takes the data and writes
it to the Table of Measurements. The black box returns 2
integers. The first is the size of the data set and the second is
the measurement that the black box returns.

The meaning of the measurement returned by the black box
will vary depending on which black box is being run. In
some cases the measurement may be the number of compar-
isons that were performed in a sort routine. In the case of the
binary search tree experiments, the measurement represents
the average depth of a node in the tree. In all cases, howeyver,
the measurement will be a non-negative integer useful in
analyzing the effectiveness or efficiency of a certain data
structure or algorithm for a particular data set. The measure-
ments returned from different experiments can then be com-
pared against each other to aid the user’s analysis.

Write to File: The text field labeled “Write to File:” takes a
name as input. If a name is specified, the generated data set
will be saved to a file with that name in the directory speci-
fied in the “Write Path:” text field. If no name is specified,
the data set will be saved to a temporary file.

Wiite Path: The “Write Path:” text field takes a path string
as input. THREADS will not operate until a valid path is

A

given. The path string needs to be a path where the user has
read and write permissions. THREADS reads and writes
many data files. If it cannot read and write its data, it will
not work properly. If the user attempts to run a black box
without suppling the write path, a notice prompt will appear
and notify the user to supply THREADS with the appropri-
ate information.

Use File: The “Use File:” text field takes a string as input.
This text string must contain the entire path and name of the
dataﬁletobeused.lfavalidpathandnameis given,
THREADS will use this data set for the black box instead of
generating a new data set. THREADS will use a specified
data set before generating a new data set. Therefore, if the
user wishes to generate a new data set, the string in the “Use
File” text field must be deleted.

Sample Size: The sample size field allows the user to enter
the number of elements to be included in the data set, rang-
ing from 1 to 10000. The sample size may be changed by
using the mouse to click on the up-down arrows, or by man-
ually entering the size into the text field. The defauit is 100
elements.

ibution; Sample distribution indicates the type
of randomness in which the data elements are to be distrib-
uted. There are six different distributions to choose from:
uniform, exponential, normal, gamma, Poisson, and bino-
mial.

To the right of the Sample Distribution, there is a button
labeled ‘Distribution Parameters’. If this button is clicked a
window panel with number fields will appear.

Figure 6. Distribution Parameters Window

With this distribution window panel, the user can modify
the distributions by changing the parameters for each distri-
bution.

These distributions can be used to evaluate how the distribu-
tion of data can affect different data structures. For most
cases, Uniform distribution is sufficient. Future work on dis-
tributions includes the development of black boxes that fully
utilize the Sample Distribution feature of THREADS.

Sample Order: The sample order refers to the degree of
order the user would like in the data set to be generated,
ranging from -100 to 100. A sample order of 100 means that
100% of the data will be in increasing sorted order. A sam-
ple order of -100 means that 100% of the data is in decreas-
ing sorted order. A sample order of zero means that the data
is in perfectly random order. Any value between -100 and
100 is acceptable. A value of 50 means that the first 50% of
the data is in increasing sorted order, the remainder is in
random order.

Data Set: The data set is generated based on the information
from the sample size, distribution, and order fields. The ele-
ments are randomly generated to fulfill the user’s require-
ments. A data set can also come from a imported data set
using the “Use File:” text field by supplying a path and
name.

e . Since data sets may be saved in
files designated by the user, experiments may be repeated.
The table of measurements from an experiment session may
also be saved, so the user may come back to the data at a
later time to continue analysis or even add to the previous
experiment record. Tables are saved by clicking the right
mouse button while on the table. From the ‘File’ menu,
choose the option ‘Save as..’ and a save window will
appear. To load in a previously saved table, choose the
option ‘Open’ from the ‘File’ menu.

Run_Experiment: When the ‘Run Experiment’ button is
clicked, the data set is generated and written to the appropri-
ate file. Next, the black box process is spawned and exe-
cuted. When the black box finishes, the sample size and
measurement are written to the table of measurements. If
the user has not provided THREADS with the appropriate
information, the user will be notified to do so and no experi-
ment will be run. If the black box aborts or crashes, the user
will be notified that there was an error in the black box and
no data will be written to the table.

View Graph: When the ‘View Graph® button is clicked, the
measurements currently in the table will be used as the
coordinates for a graph. Graphs are generated using the X-
Windows graphing package XVGR and may be created at
any point in the experiment session. Each graph is produced
in its own window with a unique title, which allows for easy
comparison between graphs.

Clear Table: The ‘Clear Table’ button allows the user to
clear the table at any point during a THREADS session.
This enables the user to start a new set of experiments at any
time. When the ‘Clear Table’ button is clicked a prompt will
appear asking if they really want to clear the table. If “Clear
Table” is selected, the table will be cleared. If cancel is

selected, the user will be returned to THREADS with no
changes.

36

. B

- W R e e

e e

WO ey e

(=P |

10

Figure 7. Exponent selection for Big Oh coefficient summa-
tion

Coefficients: If the ‘Coefficients’ button is clicked, a small
window with five buttons will appear (Figure 7). The five
buttons are log(n), n, nlog(n), n2, and n to some power, ‘n’
being the sample size. If one of these buttons is clicked, an
window will appear displaying the coefficients of that par-
ticular Big Oh of the data in the table. For example, if the
data in the table is:

100 600

If the n? button is clicked, the window will appear display-
ing:

100 600 6.000000000E-02

This means that with n=100 and y=600, an expression of the

form y=cn? would require ¢ to be 6.0000000E-02. If this
coefficient remains relatively constant over many values of
n, the function represented is a good candidate for the big-
oh function of the black box process.

Help: Help may be found both by clicking the ‘Help’ button
on the THREADS window, or by pressing the help key on
the keyboard. The button on the THREADS window will
open a pop-up window that contains complete help text.
Pushing the ‘help’ key on the keyboard will give a short
summary of help for the spot on the window where the cur-
sor is pointing. :

Quit: If the ‘Quit’ button is clicked, a notice prompt will
appear and ask if the user really wants to quit. If cancel is
selected, the user will be returned to the main THREADS
program without any changes. If ‘Quit’ is selected,
THREADS will exit and close all windows. Also when
THREADS is quit, all temporary files will be deleted so no
unwanted files remain in the specified write path directory.

THREADS Tutorial: There is a small tutorial program that
is included with THREADS. When this program is run a
window opens that displays the complete tutorial text in a

37

scrollable area. This window is sized so that it can be placed
next to the THREADS window on the same screen for easy
reference when working with THREADS.

Conclusions

The student reactions to the use of the laboratories was
favorable. They found THREADS to be a very useful tool as
well as easy to use. Their evaluation of the laboratories was
uniformly positive, indicating that the students found them
interesting, instructive, and challenging.

This course was offered in a setting where the laboratories
had to be completed outside of regularly scheduled class
time and without the instructor’s supervision. It would have
been better to have scheduled and supervised laboratory ses-
sions for completion of the laboratory exercises. Also, the
setting used made the laboratory exercises individual efforts
whereas a team effort would be more effective.

The animations were used in two settings. The students
were given instructions on their use and encouraged to run
and observe them. In addition, they were used for in-class
demonstrations. A closed laboratory setting would increase
the effectiveness of the animations by permitting an effec-
tive combination of demonstration and interactive student
use.

The success of the substitution of animations for student-
written implementations is best measured by the ability of
the students to understand the data structures and associated
algorithms and to apply them in their later work. Since all
students from this class have now completed a subsequent
algorithms class, we can state that students learning in this
environment were able to understand, apply, and extend the
concepts of this course as well as those who did more exten-
sive implementation programming.

The most problematic aspect of these modifications was the
use of the Ada programming language. The student reaction
to the use of Ada was uniformly negative. This was not a
result of the language itself, which the authors still believe
to be a very effective vehicle for the demonstration of data
structures, but rather due to local conditions.

In all courses in the curriculum prior to this course, the stu-
dents had used Pascal. In courses beyond this one, they are
either using C++ or given a choice of language. The only
other course in the local curriculum that uses Ada heavily is
the programming languages course. As a result, the students
found the on-the-fly learning of Ada at the beginning of the
data structures course to be an unnecessary burden. They
felt that this burden came on top of their other responsibili-
ties for the class and that there was little future value to be
derived from this effort.

As a result of the above observations, the future direction of
this effort is to convert the data structures course, it labora-

tories, and animations to C++. The local curriculum has
now been modified so that the students first program in C++
in.a course prior to this one, so there will be no time
required to learn the language. In addition, the previous
courses now emphasize the object-oriented approach, and
this approach will be integrated into the data structures
course and the laboratories as well.

The introduction of closed laboratories is another modifica-
tion that will be instituted in future offerings of this course.

Acknowledgments

Work on this project was supported in part by DARPA grant
number MDA972-92-J-1030 and National Science Founda-
tion grant number CDA-9200118.

BIBLIOGRAPHY

[1] Brown, M.H., Algorithm Animation, Cambridge, MA,
MIT Press, 1987

[2] Feldman, M.B., Data Abstraction with Ada, Reston, VA,
Reston Publishing Company, 1985/

[3] Feldman, M.B., Teaching data structures with Ada: an
eight year perspective, SIGCSE Bulletin, 22(2):21-29, June,
1990.

[4] Hillam, B., Introduction to Abstract Data Types Using
Ada, Englewood Cliffs, NJ, Prentice-Hall, 1994

[5] Naps, T.L. Algorithm visualization in computer science
laboratories, SIGCSE Bulletin, 22(1):105-110, February,
1990.

[6] Silver, J.L., Using Ada to specify and evaluate projects
in a data structures course, SIGCSE Bulletin, 23(1):337-340,
March, 1991.

[7] Stasko, John T. TANGO: A framework and system for
algorithm animation, Computer;, 23(5): 27-38, 1990.

[8] Stubbs, D.E. and N.W. Webre, Data Structures with
Abstract Data Types and Ada, Boston, PWS Kent, 1993,

[9] Weiss, Mark A. Data Structures and Algorithm Analysis
in Ada, New York, Benjamin Cummings Publishing Co.
Inc., 1993.

38

