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ABSTRACT

Dersﬁem,.ﬂerbert Lewis. 'Ph. D., Purdue University,
August, 1969. Approximation of Bessel's Differential Op-

erator of Fractional Order by Finite-Difference Operators.

Major Professor: Robert E. Lynch.

Difference equation problems are studied whose solutions

are estimates of the solutions of the two-poinﬁ boundary-

value problem £y = £(x) , y(0) = 0, y(l) = A and the eigen-

0, whére i is

value problem £y = Ax’y , y(0) = 0, y(1)

—xzda/dxa—xd/dx+va.

the Bessel operator of fractional order, £

0 <v < 1. Three-point difference operators, L, . are con-

structed so that Lhw‘k)(xj)jx £¢(k)(xj), k 1,2,3; ) TR B

(k)];nl is a given set of functions and

X, = j/(N + 1).

3

For differential equation boundary-vaiue problems whose

I, - R T '
solutions behave like ax + fBx as x ».0 (that is, like the
Bessel function Ju)' it is shown that the operator constructed

. Gl ] : :
(k) = X th-1 and £ have truncation error which

by choosing ¢
is boundéd, and the solution of the resulting difference eq-
uation problem and the solution of the differential eguation

problem have discretization error which is 0(h®) as n = O,
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An_upparfbound on the distance between an eigenvalue, A,
L 5 ', ' : . Weatharits ik -
of ;ZS and the set [Aj}f,of eigenvalues of any three-point dif-

ference operator'Lh7whose=coefficients_Satisfy préscribed

conditions, is obtained. The bound is ‘a product of a constant

and the max-norm o£ the truncation.error of_;%i_and Lh'with
respect to the eigenfunctidns df:£ cbrfespoﬁdihg't0 Xo.  Bov=
eral differencé:operators are showﬁ to-have'coefficients which-
satisfy the preséribed_ﬁond;éions, and. for these, min;|k4nii'
is shown to be 611 o ) O

Exact représentations of the éigenfunctions and eigen-

values of one of the difference operators are obtained in terms

of associatéd Legendre functions.,



CHAPTER I :

INTRODUCTION

In this work we approximate solutions of problems
involving a Bessel differential operator £, which has a
single regular singular point at x=0. 1In particular, we

treat the two-point boundary-value problem

(1 - la) Ly(x) = £(x) e el k)

(1 = 1b) ~y(0) =3, y(1) = B,
and the eigenvalue problem

(1 - 2a) PR T A A T

(1-2b) Oy s B A e

We consider only problems for which there is one and only

one solution y such that

(1-3) P vee®roan,



T

where m is some positive number. With this amount of smooth-

ness of the solution, we obtain O(hz) convergence to y of

solutions of certain difference equation problems as the

mesh length h tends to zero. If less smoothness were assumed,

techniques of analysis would yield a'corresponding.10wer rate

of convergence. We treat, in particular, cases in which

0 <m < 1 so that derivatives of y(x) are unbounded as x - 0.
The example of such an operator which we treat in detail

is the Bessel operator of order v defined by
(1-4) Sy(x) = =x"y"(x) - xy' (x) + ¥?y(x)

for 0 <y <1, In Chapter III we approximate the solution
to problem (1-1) with & defined by (1-4), A=0 in (1l-1b), and

(LB x "t gect0,1).

In Chapter IV, we approximate the eigenvalue problem
(1-2) for £ given by (1-4). In both cases, the solution, y,
is of the form (1-3) with m=p.

We considef approximations to theI501ution, ¥, of 3 . pro-

blem such as (1l-1) obtained by finite-difference approximation



on an equally spaded mesh

x, = 3h Ll w0l sl 4 Ly oh s LB 4 )

Second-order difference operators, L, are studied which (in
some sense)  approximate &£ at the interior mesh points. The

solution of

(1-6a) Lu, = £, : S g L

\ (l-6b) ; .-uO = A.; u e B,

where fj,E f(xj), is taken as an estimate of y at the mesh
points xj. .

A common method for obtaining L is to replace each deri-
vative in the second-order differential operator £ by a cen-
tral divided difference. Then if ye€c®[0,1], Ly - Ly = 0(h®)
at each interior mesh point. Keller (l9], p.73) gave an

example of such a scheme applied to the problem
(1-7a) ~y"(x) + @lx) y'(x) + r(x) y(x) = £(x) ,a <x<h
(l""?b) ' Y(a) = o [ Y(b) = ﬁt

where q, r, £ are continuous on'[a,b] and g is positive there,
It is shown that for such a difference operator L, the solu-

tion u of the corresponding difference equation problem is



such that luj - nyj)l < ch® at each mesh poin; and for all
ﬁ sufficiently-small, where c is some positive constant inde-
pendent of h.

An éxample of eigenvalue approximation was considered by

Keller ([9), pp. 131-135) for the problem
(1-8a)  (p(x) y'(x)) - a(x) y(x) + Ar(x) y(x) = 0, a < x < b,
(1-8b) | yla) =0 - Lyib) = 0,

where p 2 0,.p' and g are continuous, r > 0 and g 2 0 on ra,bl,
He provéd that, for the problems (1-8) w;th eigenfunctions in
c*fa,b], the eigénvalues of the differencé operator resulting
from ?eplacing all derivatives in (lfSa) by central divided
differences, converge to the.eigenvalues of (l—é] as h*, h = 0,

Bulirsch ([4]) extended Keller's result for problem l—S)
to the singular case where q and r eadﬁ have a pole of first
ordér at either of the endpoints. He proved that the eigen~
values of the difference problem, constructed as above, con-
verge to those of the differential problem (1-8) as h®, n - 0.
Under the above conditions on q and r, the eigenfunctions are
in ¢*la.bl,

A three-point finite-difference operator L, which approxi-

mates a second-order differential operator £ on (0,1) can also



be constructed in the following way. Let the functions

w(l), w(z), ¢(3) be a set of functions which is linearly
independent on any set of three distinct points in

(0,1). Then L is constructed so that

(1-9) Lw‘k’(xj) ’ So‘k’(xj) g b 8

for every mesh point in (0.,1), xj = Jh = J/7(N + 1).

(k)(x} = xk_l.

A common choice. of these functions is ©
For & of the form (l-7a), the L obtained in this way is
identical to the one obtained by replacing each derivative
by a central divided difference approximation.

Allen ([1]) constructed a difference operator by use of

(k)

exponential functions for the @ and gave some numerical
examples. He gave no proofs of convergence.

One expects rapid convergence of the solution of the
difference equation to the solution of the differential egua-

(k)(x) < xk-l

tion with operators constructed using o on an
equal spaced mesh, provided that the latter solution can ke
approximated well over the interval by linear combinations of
the w(k). For example, any function with three continuous
derivatives can be approximated to order h® over an interval
of length 2h by a quadratic polynomial. But for problems

(1-1) and (1-2) with singular operators whose y are such that



x-vyec4t0,l] with 0 < v < 1, local polynomial approximation
cannot be guaranteed to be as good as order W, @s h goes to
zero, near the singularity of the derivative at x=0. Conse-
quently, it is doubtful that such difference problems have
golutions which converge as fast as h®, and results of a numer-
ical experimént.for such a case are presented in Examéle 6.2.1)
of Chapter VI.

We consider; for.the first-time, the use of a set of u(k)
which does approximate éolutions y for which x_vyec*CO,lf,
0 <y <1, to order h® locally. In Chapter III, we consider

the problem which results from replacing the Bessel operator

£, as in (1~4), in problem (l~1) by a finite-difference oper-

(k)(x) vl

ator constructed.as specified by (1-9) with ¢
for k = 1,2,3. The function £ in (l-la) is taken to satisfy
(l~5). The value A in (1-1lb) is chosen to be zero in order
to guarantee the boundedness of the solution. It is shown,
in the proof of Theorem 3-1, that the solution of fhis differ-
ence problem converges to the solution of the differential
problem with order of convergence two for £ such that
xV"2fec* 0,11,

The Bessei gigenvalue problem (1-2) with £ defined by

(1-4) and p(x) = x°, is considered in Chapter IV. The Bessel

functions JV(A%x) are the eigenfunctions of this @roblem_so
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that the solution y is of the form

v+2k
X

(1-10) viix) = % Core

k=0

yBR R %

In Section 4.3 we obtain a bound on the distance between any
fixed eigenvalue of the Bessel eigenvalue problem and the
set of eigenvalues of any three-point difference operator Lh

whose coefficients satisfy given conditions. The bound is

‘given as a product of a constant and the max-norm of the trun-

cation error of Lh and the Bessel operator £. This result

shows that if £ and Lh are consistent, then one obtains con- .

vergence of their eigenvalues. Furthermore, the rate of con-
vergence is the same as the order of consistency. This result
is tﬁen applied to one of the difference operators discussed
in Chapter III, to obtain a rate of convergence of the eigen-
values of the . difference equation eigenvalue problem to the
eigenvalués of (1-2). 1In particular, the problem which results

from replacing £ by L _constructed as in (1-9) with

h

= xk+v-l, k = 1,2,3, is shown to have eigenvalues which

w.(k) (x)
are convergent to any eigenvalue of (1-2) with order of con-
vergence two,

In Section 4.4, we consider the approximation of the Bessel
operator, £; by a finite~difference operator as in (1-2), with

+2

¢(l)(x) = XU; ¢{2)(x) = xv and w(3)(k) arbitrary. We show



that if w(a)(x) = xlu for any real W different from v and

v % 2, then the difference operatd: and Bessel's operator are
: cdnsistent with respect to a class of functions which includes
all of the eigénfunctions of (1-2), with order of consistency
at least two.

For ¢(3) chosen so that the resulting difference operator
is self-adjoint, convergence of the eigenvalues of the differ-
ence operator to those of (1-2) with order of convergence at
least two is shown in Section 4.5.

Some results are available in the literature on exact
representations of eigénfunctions and eigenvalues of Bessel's
difference operator of order zero. Gergen, Dréssel, and
Parrish ([6],[77) constructed the exact solutions of the eigen-
value problem for the difference oPer;tor formed by (1~9) with
m(j) = xj"l. They showed ([6]) that the eigenvalues of the
difference problem converge to those of the differential and
that the eigenfunctions also converge ([71), both witﬁ rate
of convergence 2.-

Another study of approximaﬁion of Bessei‘s operator of
non-zero order by finite-differences is given by Pearson (.11]).
He has shown, by consideration of the integral representations
of the solutions of the difference equétion, that the solu-

(3)

tion of the difference equation formed by choosing © %) =

j~1 | . N o
xj' , converges to the solution of Bessel's equation which 1is



o,

Eounded at the origin. Although he does prove convergence,
he does not determine the rate of this convergence.

~We extend some of the above results on exact representa-
tion. 1In Chapter V we present representations for the eigen-
values and eigenfunctions of the finite diffe;gnce cperator
considered in Chapters III and IV which is constructed by

choosing wtj)(x) = xv+3“l,

= 1,2'3I
The results of some numerical experiments applying a

number of the schemes.constructed in Chapter IV are given

in Chapter VI.
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CHAPTER II

PRELIMINARIES

In this chapter, we describe the class of differential
equation problems to which our analysis can be applied,
describe the typical difference eqﬁation problem and define
the terms truncation error, consistency, discretization error

and convergence.

2.1 The Differential Operator

We treat the second-order ordinary differential operator

£, defined by

(2-1) Syix) = pilx)y™ (%) + gilx) y'(x) + rix) y(x)

=

where the coefficient functions are of the form p(x) = k§§pkxk,
(%) = % xk r(x) = % r xk on 0 s x 5 1 We assume the co-
LX) =  29G X o ® x0Tk ‘ RS
efficients are such that the differential operator &£ has a
regular singular point at the origin, and the origin is the

only singular point of £ in [0,17.

We consider the two-point boundary-value problem

(2-’23) ‘SY(x) = f(X) ,Xf{o,l),



|/""‘\

18-
(2-2b) y(0) = a, y(1l) = B.

We now describe the behavior of the solution of (2-2a)

. for the case which we study in the following chapters.

For the case that the coefficient pp is non-zero, direct

substitution of

xv p ckxk
k=0

y(x) =

into (2-2a) with £ ¥ 0 yields equations for the coefficients
C for which this expansion is convergent ([14., p. lé?).
The value of v is a root of the indicial equation. Thus, ¥V
is given by

e %{ R %t R L %t)e 5 %fi ]%}.

We treat only the case that one of these values is pbetween 0
and 1, and the second is negative. Fof this case, the series
with 0 < ¥y <1 is zero at x = 0 and the series with v < 0 is
singular at x = 0. Hence, the use of a zero boundary condi-
tion at x = 0 excludes singular solutions of the homogeneous
equation.

If the right side of the nonhomogeneous equation (2-2a)

: o
‘has the form f(x) = xm Z.a xk for some nonnegative real

k=0"k

number m, and if a, # 0 and' m # ¥, one easily obtains the
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general solution of (2-2a) which is bounded at x=0 to be

y(x) = ax’ Z ckxk +ox b x
- kw0 k=0

8

1l

where the coefficients b

| can be expressed in terms of the

coefficients of p,q,r and f (provided the coefficients ak

. tend to zero rapidly enough as k'®). With O <y < 1, the

value of y(0) is zexro if m > 0 and b, if m=0. The bound-
ary condition y(1) = B can be satisfied by proper choice of
the value of a.

For pz # 0 and the special case that m=¢, the solution
of the nonhomogeneous problem (2-2a) has a logarithmic
singularity at x=0 if ao#0. Hence, for the cése.m=u, one.
obtains a bounded solution only for the case a,=0.

We study problemé (2-2) whose solutions behave like
axv + va+l + yxv+2, 0y <], as x = 0. Thus, we include
the operator £ of (2-1) for appropriate ranges of values pz,
d, and r, which yield real roots of the indicial equation.
one of which is negative and the other, v, satisfies
0 v < 1. 'We include functions f on the right side of

m

(2-2a) of the form x . L. a xk for which m = p +1 or for which

k=0 "k

m > v+2 when 0 <.y < 1. For such problems we use the bound-

A = 0 for the cases that 0 < v < 1.

ary condition y(0).
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2.2 The Difference Operator

We limit our study to uniform meshes on the interval

[0,1] with mesh points X5

xj = jh bG8 Dpeesn N L3 h & L/ + k).

The norm || - || for any function f defined on the domain
D, where D. is either the interval [0,1] or the set of mesh

points on [0,1], is defined by

1l £ || = max |£(x)].

xEDf

The difference operators L . which we treat, are of the

form

2-4) G [PV« R (G T TG s, o T
( . "3 i il 3.3 ) gt

¥ ] = l;--.,N,
where U, j=0,1,...,N + 1, is any set of real numbers, and
haﬁe specific choices of the coefficients a, b and c¢. Each
of our choices of coefficients a,b,c in subseqguent chapters
depends on the mesh length h.

For a given L_ as in (2-4), we can take the solution

h

(if it exists) of

(2-5a) - Lhuj = f(xj).. R e .
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(Z—Sb) Ugiim Bl =5

as an approximation at mesh points x = xj of the.sclution
y(x) of (2f2). The solution of (2-5) exists and is unique

if the tridiagonal N X N matrix, A, with elements

a. = 0 a = b

ik e Ot T T e

ORI S

k= 2,..s,8, 18 non-singular.

2.3 Relations Between Differential and Difference Operators

Definition 2-1: For a given set & of functions in the

1 of

domain of £, the truncation error, T, [with respect to &

the operators & and Lh is defined by

(2-6) Tj(h p o u) . Lhu(xj) - Su(xj). 48 e ios iy 0EF,

Definition 2-2: For a given set & of functions in the

domain of &, the operators & and Lh are said to be consistent

[with respect to &] if and only if

lim || 7(nsu)l|} =0 Ju€d,
h~0 :

Consistent schemes are said to have order of consistency at

least p [with respect to ], if and only if,

| ] T(h:u)|| = D(hp) as h—0, ued,



N

|
wn

Definition 2-3: The discretization error, e, of the

problems (2-2) and (2-5) is defined by
G 450 R i - X. o =l e alN # 1,
)% ug = ylag) j

where u is the solution of (2-5) and y is the solution of
(2-2).

Definition 2-4: The solutions of problems (2-2) and

(2~5) are said to be convergent if and only if

lim || e(n)|| = 0 g
h-=0

Convergent solutions are said to have order of convergence

at least p if and only if

|| em)]|| = onP), as h = 0,
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- CHAPTER III1
APPROXIMATION OF SOLUTIONS OF A BOUNDARY-VALUE

PROBLEM FOR BESSEL'S OPERATOR

In this chapter we study a particular two-point boundary-

2
sl 8.0
dx® dx :

value problem with Bessel's operator L = =x
In Section 3.2, we show that a common, three-point finite-
difference approximation has order of consistency less than
two over a class of functioﬁs containing the solution of the
differential equation problem; in contrast, this same differ-
ence approximation used for problems involving non-singular
differential operators yields order of consistency two. We
derive a new, three-point difference operator, Léz), and

show in Section 3.3 that & and Lﬁz) ﬁave order of consistency
at least two over a class of functions containing the solution
of the differential problem. The linear difference operator
is shown, in Section 3.4, to be monotonic, and this, together
with the fact ;hat £ and Léz) are consistent with order of

consistendy two (Section 3.3), is used to show that the

o A 3 " 2
discretization error ig order h .
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3.1 The Differential Eguation Problem

In this chapter we'study'approximation by means of

finite differences to solutions of problems of the form
{3=-1a) Sy = £ TR |

{3=1h) y(0) = 0, y(l) = A

where £ is the Bessel operator defined by

§3«2) Ey(x).=‘-x2y“(xi - Xy'(x) + viy(x)

for some fixed v in (0,1).
Particular problems which are of interest, and for
which one might wish to attempt approximation by finite-~

differences, are Bessel's equation

" (3-3a) &y = xay U S o

(3-3b) y(0) = 0, y(1) = A
and the Bessel eigenvalue problem
(3-4a) Iy = Axly b

(3-4b) y(0) = 0, y(1) = 0

and we want to include these special cases in our analysis,

17
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The solution of (3-3) ([14], p.358), is a multiple of the

function

; v @ 2k = k b
bl &, k?OCZKX i R = AL 1) SV

and the eigenfunctions of (3-4) are constant multiples of

the functions Jv(k%x) for all eigenvalues, A, of (3-4). The

right sides of (3-3a) and (3-4a) are, therefore, the pro-
V+2

ducts of an analytic function and x g

We would like to include in our ahalysis functions £

of the form

(3-5) Eifae) & xv % akxk.
k=0

But if ao # O, then the solution of (3-la) has a logarithmic
singularity at x=07 Hence, we consider only right sides f£
such that xnvf -+ 0 as % = 0.

The general solution of the homogeneous equation
(3-6) Ly(x) = 0 D S x% ],
is ax® + px "’ for any constants a and b. For problem (3-1)
with £ as in (3-5) with a, = O and the boundary condition

y(0) = 0, if the solution y(x) is

(3-7) y(x) = xv % ckxk Ao I S s
- k=0

then direct substitution yields co, arbitrary and ék = (k2+2uk)a},

k = 2,3,.... The value of c, is determined by the second



ig8
boundary condition y(l1) = A. The series (3-7) converges if,
and only if, kgaak{ka + 2Vk) converges. '
Our analysis applies to problems (3-1) in which the
right side has the form
3

vV+k
212

f(x) = x + g(x) , 0 Sx <0,

4

5 S L=
¥ 404[0,1], that is x U 4gEC 10,1], PFor this £, the

where g€x

solution, y, of the problem has the form

3
v+k
= L
y(x) k=0ckx + G(x)
v+d 4 ]
where G€x c'[0,1]. We denote such a function as an element

of the family &, that is,
v+k xv+4c4i0

©)
X + G(x), Ge k]

(3-8) 3 = {Y‘Y(x) - k§0ck ]

We note that JVE3 for any positive v and for Ju’ Gy = @ = 0,

3.2 The Difference Equation Problem

A common technique for obtaining a difference approxima-
tion to a differential operator £ is to replace all deriva-
tives by standard O(ha) divided-difference approximations to

them on a uniform mesh (c.f. Chapter I). For & defined by

(3-2), the difference operator, Lﬁl), obtained in this way is
u. = 20. + u. 2 -1l Fou
{3—9) Lél)u' = —xal 1*1 ] J+1 ! v [ J“l il uj+l ]+ vgu
il L] ) - j G|
h 2h J
= (3% wly w, oow (25% #0P) w4+ (=37 = L) u e ol
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 We investigate the truncation error of £ and Lél) for

y€d, where 3_is7given-byj(3—8). -Fdr'such a y, 

(3-10) .
SR e S e Pl ¥ i, A e
where xj-l < ¢ < xj+l.'_Since y(x) behaves liké xu + 0(xv+1)

as x goes to zero, then as h goes to zero and j remains

fixed, we note that.ytq)(xj) = O(hy_4) and y(3>(xj) = O(h?-B).
Therefore,
(3-11)' Lﬁl)y(x.) = Sy (x.) + o(n") ,h-0, j fixed.

J i

Away from zero, the derivatives of y(x) are bounded, since
y(x) is 'in ¢*(0,1). Hence, for any positive number c in

(0,1, 1itly(ey) = sy(x) 4 00®) .m0, x; > >0,

h
By (3-11), &£ and Lél) are consistent with respect to &, with

order of consistency at least v.

To show that the above order of consistency is exactly v,

we use the function y(x) = %,

j = 1, Lél) ig

At the first mesh point,

(1) B i

B ey L 2" Z

R Rl R

The value in the brackets in the above expression is alwavs

- : ¥ . ; ; :
non-zero. Since X 1is a solution of the homogeneous equation,
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vV

Ex = 0, Hence, L X 1is equal to the truncation error

(L)
h

at j=1 and so there exists at least one function, namely xv,
for which the order of consistency is exactly.v. Sinece the
order is exactly v for y(x) = xu, it is also exactly v
for any function whose series includes a multiple of x’as a
term. For example, this is true of y(x) = JV(A%x) for any
positive real A.

In Chapter IV, we show that for the eigenvalue problem
(4-1), the eigenvalues of a difference problem obtained by
replacing the differential operator in the eigenvalue pro-
blem by an approximating difference operator, converge to
the eigenvalues of (4-1) with error bounded by the order of
consistency of the difference and differential operator with
respect to the eigenfunctions of (4-1), which are all of the

1
form JU(Aéx) for some A. When the difference operator used

is Lél), we hence have a bound O(hu). This behavior of the
truncation error apparently explains the relatively slow con-
vergence of the eigenvalues and eigenfunctions observed in
numerical experiments (see Chapter VI Example 6.2.1).

él) and & fail to be consistent with

The reason that L
order of consistency at least two, which is the order obtained

with difference approximation to a non-singular operator, is

that the usual difference approximation is constructed in
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such a way that at mesh points, the values of Ip{xj),

where p(x) is any quadratic polynomial, equals Lél)

. )
5 J
that is,

(1)
Iy

x.) = &p(x.) e I
p(J P(J j ‘

One expects such approximations to yield good estimates of
solutions which do behave like polynomials iocally, since
quadratic polynomial interpolation on equally spaced mesh
has local accuracy 0(h®). But solutions of the form (3-7)
cannot be approximated locally to O(h*) by quadratic poly-
nomials near x=0.

In general, a ﬁhree—point'difference operatbr can be
constructed to approximate a differential operator & for

(1) wtz), w(B)},

any given set of three functions {o ' linearly

independent on the set of mesh points xj &5y 308 Loses el +l;

so that

Lh{wtl), m(z). ¢(3’} ¢0ij) = £¢‘k’(xj) I SPLAT QRORED T IR TSI P T

Given three such functions, one can obtain the coefficients

of the difference operator, Lh' given by

L.u. s @&, n. 4 Rl 4 Y.

. . ;I:lpo-.;N;
hg s o R 19441 9

by solving the system of equations
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(3~12)

(k) (k (k)

aj (%] (xj_l) + Bjm (x ) + ¥ ¢ (xj), K o=11,2,3;

In particular, in order to approximate the solution of

(3-1) when the solution is in class &, we approximate £ by a

{k)(x) & Xv+k—l'

difference operator constructed as above with ©
k = 1,2,3. Note that when j = 1, the system (3-12) reduces

to a system of three equations in two unknowns. Hence, at

T : v
this point only two of the functions xu, ® +l, xv+2 can be

used to construct the approximating operator. We choose %’

and xv+2. This operator, which we investigate in this chapter,

we denote by Lé ). We use the notation

Lh[#u’ xv+2]

u

(3-13a) 1

u L'{xv xv+l xv+2*u
j h ; i Jj pj:2.p--.,N,

JE

(3-13b)

for any set of numbers {uj}.

Computation of the coefficients by solving (3-12) gives

(2)
b

(3-14a) Léz)ul = (4v { 4) [ul - (B)Uuz]/B

(3-14b)

(2) N ] | YV, _.2 : : s 3 v
Lh Wy (j'~ 1{ (=1 # w3 + %J)_uj_l + 3 ey + (5 7)

s 2

o eyt el ) g B Beearils

j+1'
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In terms of xj = JHh, this can be written

.
(2) [<_:L—-> Z 2uj'+<—}-{§:—£/: uj+l_:—

_i[(“L-) ("L_D] B M0 352 i

1f we define the operator X by
(3-15) Xy(x) = =x°y"(x) - x(2v + 1) y'(x) o T R

then vay(x) = x”xy(x). If we approximate X by replacing
each derivative by an 0(h®) divided-difference approxima-
tion, we obtain Kh given by

(3—16a)
- 2u, + 1 : =i, g u

Kh , o= - x ( i . 3+1) - xj(zv +'l){ J-2h ;

= (=3 + v + %3) uy_y * 24® ag + (=4% = ju - kj) u,

for any set of real numbers {uj].- We note that

10 A B 3 :
Lh p i TR Khuj' for j = 2,...:8. Hence we mlgﬁt expect

(2)

Lh to be a good approximation to £ on ¢ since Kh_is a good

approximation to ¥ on ¢*[0,1].

o-;NJ
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(2)

As we noted above, the operators Kh and Lh are related

by Léz)oj =] KnuJ s =2, .. N TO obtaio an operator for
(2)

which this correspondence holds even at j=1, we define K

(2) =L —V (2)
(3-16Db) Kh W, = [( u)l] ) (ul_*_u2)/3'

(2) ;
Kh .uj Khuj e

1l
n

. pN-

For three-point difference equation problems with given
oalues of u at the boundary points. j=0 and j=N + 1, one has
an eguivalent tridiagonal matrix problem. We prove the follow-
ing lemma which we need in Chapter.v.

Lemma 3-1: 'The matrices A and C, equivalent to the dif-

(2) (2)

ference|operators:x2 Lh and 2 Ky respectively, are similar.
J

The matrix C is non-singular, and all eigenvalues of C have pos-

itive real part.

Proof: If the matrix D is defined by

diag(l,2u;---:NV)p

o
Il

then C = D"*AD, The matrix C is irreducibly diagonally dominant,
which can be seen from (3-16), Therefore, C is nonsingular and
all of its eigenvalues have positive real part ([13], Theorem

LBy D:23)
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3.3 Truncation Error Analysis

Lemma 3-2: For_£ and L(Z)

5 V k ; v+4 4
u€d so that u(x) = Z c.x i + G(x), Ge€x i (0.11],
k=0"k
(3-17) (£ = 1%y uex)) = o™ 4 (eaxd* 4 W42 o)
(£ - Lé )) u(xj) — (c3x;+l i x;+2)'0{h2). gea R N

Proof: For u(x) as given, we have, by the construction

of Léz), that

3

(2) (2) v+k
£ - = (& = 1
( L ) u(xy) ( ) IZk o Py, * G(xy) ]
v
Since &x s = Evz - (Vv + k)z] xu+k and L(z) :+k
k+v
a % (4v + 4) (1 - 25
we have £ and Léz)'of G(xy) are both O(hu+4) since GEx a4 4TO L 5 4
and hence
(2) G 2
(£ - Lh ) ul(x;) = k§0 ckEu - (v + k).]h -
3 v+k V+4
- kEO Cp 3(V+l) (1~ 2 ) M B O(h ) =
e %(-2:; o, SRR -31—(101,» 3 & oy .

. V+l v v
= ¢ h i (cax;+l 4+ X1+2} 0(h™)

given by ( 3-2) and (3-14) and
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Hence, (3-17) holds at j = 1.
Since‘Kh is constructed by replacing the derivatives in
X, defined by (3-15), by the usual divided-difference approx-

imations, then

2

X
(K - Kh) v(xj) = EH%l xjhzv(B)(xj) +_—% hzv(4){€) 4 O(h3),

j=l'-!'fN’

for xj_l < § < Xj+l and for any function v(x) €C4:O,l:. I1f

v(x) is given by

3
- k -y
= = b <.x < i
v(x) x  ulx) kEO c X+ X G(x) ., 0 X 1

we note that v(3)'{x) = cg + Xg(x), for some function g in

c*[0,1] and-v(4)€c[0,l]. This follows since Gexv+4c4[0,1?.
From this we have
2 ; 2 ;
¥ - viz.) = ¢.¥.0(h") + %% .0(h"), TR RN
(¥ = K ) v(x,) = ¢ ¥,0(n") + x2.0(h"), ]

’ v v (29 Vv
Since &£x v(x) = x ¥v(x) and L x.v(x = X, ) fo
inc (x) (x) b y ( j) JKhv(xJ) r

as noted in Section 3.2, we have
(2) v v+l p+2 e
£ - ux.) = %, (K- 2 )= (eax. +3 B(hs}).,
( Lh ) ( 2 3( Kh) v ( 3) (es , 3 ) (hz)
5 B (R .

This completes the éroof of Lemma 3-2.
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(2)

3.4 Proof that Lh is a Monotonic Operator

A linear operator, T, is said to be a monotonic operator
if Tu>0 implies that u>0 for arbitrary u in the domain of T.
A non-singular linear operator which has a positive inverse is

monotonic since, if Tu = v>0 then u = ? v and if T ' >0, then

T"1v>0..
Lemma 3-3: If (2)v.>0 fow e L0 N ang vy = ¥ = 0,
e Lh ] : N+1

then vj>0 for j = lie.esNe

Proof: Since the matrix A edquivalent to the difference

(2

operator Lh ) is similar to a matrix which is irreducibly

diagonally_dominant (Lemma 3-1), ng)

g (2)

that its inverse is positive and therefore that Lh is mono-

is non-singular. We show

tonic. The matrix 7 i has columns with elements ak. = u;k),
where uék), j = l,}..,N, is the solution to the problem
(2) (k) (k) p
3=188) L' Q: =0, ) ok i wdy
( h : 3 J
(3-18b) uw =0, u = 0,

where 5§k) = 1 if j =k and ﬁ;k) = 0 is 3 # %,

; v
Since £x = 0 and Ltz) was constructed so that £x§ =

h
A gl B :
2] Lh Xj' it follows that uj = xj is one solution of

(

2) v
th)u = 0. Futhermore, xj satisfies the boundary conditicn
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up = 0. Therefore, we have that
v :
u‘k) S 3= Wi a vk,
J ]

for some constant a.
~If a function £(x) is not identically constant on the

; ; '
mesh, then the pair of functions x? and xj f(xj) are linearly

independent on the mesh. If xg f(xj) satisfies Lhy = 0, then

by direct substitution and simplification, we obtain the following

difference equation which is satisfied by £:

-3 - v - %) fj+l + 23fj (3 +. v + %) fj+l =

wllin V- SR ) o RS £ ) 0

j =2;¢-n‘;N

Since 0<(3 ~ ¥ - k) < (j + ¥ + %) for j 2 2, and 0<v<l, then

L. Y v foe: BlE0, E. - £ and f. - £, have the
] -1 3+l J. J i-1 J+1 3
same sign. Therefore f is a strictly monotone function of j. We
take £f; = 1 and f2 = 2. Then f is a positive, strictly monotone
increasing function. Thus, with this £, the general solution of
(3-18) can be written as
a(3m)" R
k) = i ¥
TR N E A R s
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To satisfy the boundary condition ulj\I l = 0, we take

b = —cf . For both definitions of u to be COHSlStent

N+1

Msie ], gho e 2) {k)
at j = k, we take a = c(fk £ l). The fact that Lh uk =

requires that c = [k nY (kE & Vk + %k) (f - ka) 1% which

is negative since fN+l > fk' The coefficient a is positive

since it is equal to the product, c(f, - £ ), of two neg-
(k) k N+1

ative numbers. Therefore, uj EQlEoY 3 = lius ke When
j 2 k, we have.
afK)
J
This completes the proof of Lemma 3-3.

v
: = 5
(jh) c(fj fN+l) 0.

3.5 An Error Bound

We define the two-point boundary-value problem for the

(2)

difference operator Lh , which is analogous to (3-1), by

(3-19a) Léz) uy = f(xj)

(3-19b) Ue =0 & &= B

(2)

where Lh is as in (3-14). 1In the proof of Theorem 3-1, we
show that the solution of (3-19) converges to the solution of
(3=-1) “as 0(h®) when the latter solution is in & with ¢y = O.

Theorem 3-1l: The solution of (3~19) converges to the

solution, y, of (3-1) with order of convergence at least 2 when

y€d and ¢, = 0.

Proof: We first define the mesh function g by

e S X
gj = 2(Jh) - (Jh) 1 J - O,l;--a,N'+ l-
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We note that

P
TTEBISES AL
L lgye 4V + 4) (jh) '
(:2:) v v+l VT
L L= £(2x. - X, = (20 4 1) h : 2
w94 3% ) ( (Jh) ¢ d oy
So g is a positive function on §od Ly e N EOF which L;Z) gj > €Y,
The discretization error, e, is |
e, = y(x.) - u, : T o o I . (1 1 (S
gl s ; i . ey
Then e is the solution of the problem
o |
1% e = Tiny) 5o s
h  JEE ; ;
e, w 0, .8 = 0

For convenience, we drop the parameters of Tj throughout the re-
mainder of the proof since they are always h and y.

By Lemma 3-2, we have, since ¢, = 0,

V+1 2 .
7. = %, o(h%) SN SR
s s : : o
- :
We define 0 by 055 xU+1 7. and therefore Uj = 0(h®). We note
; 3 |



‘ : that e is also the solution of
1
v+l L(z) e, = g sl NG
X, h 2 ]
J
€q = ) eN+l = 0
N
We define w by w, = (o , — e Since v+l L L
i ¥ v ol | 9, < s
for § =11, ee i :
l.
(2) > 2 i
L LT W o] | 9,20 , 3=l
J ,
?_\ Therefore, by Lemma 3-3, we have
3=20) w, = Hall g, -~ @, 20 , R e S
(200w a [[obl gy = & ’
We define v by vj = |\c|l gj.+ ej, we once again obtain
1 : :
Y+1 L(z) e ()] ' j = lr N
wn h J
J
and, by Lemma 3-2,
3-21 v, = a T e - e S T it s M
(3-21) i= el gy = ey j



Combining (3-20) and (3-21), we have

]
i_l

] = Hablogy = il llebl - . - 3
J .
But since ||U|l is order h® and ||gi| ig' 2, then

|lel| = o(n®)

~and the proof is completed.

We observe that if x_zﬁv fec*[0,1], then the

y, of (3-1) is of the necessary form for Theorem

33

solution,

3-1 to apply.
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CHAPTER TV

BESSEL EIGENVALUE PROBLEM

In this chapter we consider approximations to the

eigenvalues of the Bessel eigenvalue problem

(4-1a) Sy(x) = -xFy''(x) -xy'(x) + V?y(x) = Ay(x),
g<x s 1,

(4-1b) | yiOy = 0, y(l) '=.0,

We take as estimates of eigenvalues A of (4-1), the eigen-

values, A, of

: ; . ;
4-2a TN 5 1o <L R TR [ 7
( ) gy = g Yy j

- . — ) = 0
where L is a difference operator given by
;i i L | j+l

(4-3) L., =@ 1. +-ﬁju. + yju.' L & TR

for any set of numbers uj, and some given set of values «,8,7.
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We note that since the eigenvalue problem (4-2) has
homogeneous boundary conditioné,.tﬁe coefficients &, and
YN cén be set equal to zero. Then the eigenvalue problem
(4-2) is equivalent to the eigenvalue probleﬁ for the NXN
tridiagonal matrix A whose elements are the coefficients of
;%* Lj,. That is, if A and u are an eigenvalue and cor-

]
responding eigenfunction of (4-2), then

Au = M,

4.1 A General Bound from Matrix Theory

The vector norm ||.\|2 defined by

N ot
[z]la = €, 2 23 )
is used throughout this chapter. A matrix norm subordinate

to this vector norm. is, for any real symmetric matrix A,

l |Al ‘2 = hfnaxl'
where lmax is an eigenvalue of A with largest magnitude.
We now prove the following.

Lemma 4-1: For any N X N real matrix A, if there exists
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: L "
is symmetric,

a positive definite matrix D such that DAD
then the eigenvalues [Aﬁ}?~l of A are real, and for any

real number A and any non-trivial N-vector y,

. DADT: <AL) D
mlnklnl(_kls‘l( ) YHa :

||Dy||2

Proof: Since, by hypdthesis, B = DAD ' is symmetric,
the eigenvalues [nj} of A are all real. For any non-trivial
vector y, we set

T:(A—XI)Y.

Then

(DAD—l - AI) Dy = (B = AIL) Dy = DT.

1f XA is not an eigenvalue of A,then (B - AI) is invertible

and
=1
Dy = (B - AIL) DT

Since, by hypothESiSQ (B - AI)_; is symmetric, we have
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llpyllz & |1(B = Aan) " ||| lDTl]e =
1

< nex (5t ) orlle < oty Mot

Furthermore, since ||Dylla and mink Iﬂk-Al are non-zero by

hypothesis, we obtain

(4-4) .mink PR

If A is an eigenvalue of A, the min, lAk - Al = 0, so (4-4)

pr|ls  ll(oap=* - A1) Dy|ls
T [Toy 1= ?

holds for any.l and any non-trivial y. This completes the
proof of Lemﬁa 471.

Lemma 4-2: For any N X N real tridiagonal matrix, A,
for which the product ak,k—lak—ljk is positive, k = 2,...,N,
there exists a positive definite matrix D such that DAD ' is
symmetric.

Proof: For any non-singular N * N diagonal matrix D,
with the kth diagonal element denoted by d , we have, since A
is tridiagonal, that B = paD" ¥ is tridiagonal with non-zero

elements given by

gy d

By =2 v By g a1 N k41,

Bl a, bl kT TRk

k=l;p.-;N“l' b = a .

1f we choose d; to be an arbitrary positive number and take

the remaining elements of D to be

; ' a :
(4_5) dj(‘{"l » ( fﬁi )li dk ] k = lf-c-.rN-l;
k+1,1

then B is symmetric. This completes the proof of Lemma 4-2.

4.2 Typical Behavior of the Coeffieicnts of L
- 1§

We now examine the behavior of the coefficients of two

finite difference approximations to:f, namely, the two studied

5 k)

in Chapter III, Lh and Léz).
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For the difference operator Lél}, given by (3-8), we
s
note that the ratio of coefficients, EFJI' used to obtain
y ;+ 2

/o i+ 57 .
. . r

: j+l J i 3]/2 = %

4w L,..4,N=1, &8.J " *®, this ratio of polynomials tends to

the symmetrizing diagonal matrix D is =

one.
The corresponding ratio for the operator Lé2); which is
Y.  CAC "
" ; N2V j T
defined by (3-14), is —L = ( 71- i ; ol . A Ddeent
: aj+1 j+l /. R

N-- 1. As j = ®, this ratio also tends to one. All the oper-
ators which we consider as approximations of & in this chap-

ter are such that the ratio has the form

W .

gt s SR i e h
a. “C‘j_i_l) r(j) ! :] o 3!“"!N 1'!
i+l : 5

where 4 is some real number and r(x) is a rational function

of the form

(x + ay)...(x + ag)
[X + bl)...(x + bs)

(4-6)  r(x) =

for some positive integer s and some sets of values {ék},
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{bk] such that a,, b > -2 for k = 1,...,5. In order that we

kl’
might examine all such operators, we derive error bounds on

the eigenvalue estimation for operators which satisfy such a

condition.

4.3 Error Bounds for Eigenvalue Estimation

We now prove the following for operators of the form
discussed in the preceding section.

Lemma 4-3: For any L_ as in (4-2) which is such that

h

s (3+a )

...l_‘ __j__{; i RN S
_<j_l r(j) = ( ) v G5, S P S

where ay s bk > -2 and 4 is some real number, there exist pos-

itive constants c; and cg such that

2+ 2
o1k “‘S<ﬁ{5cak+m SR SVET S )

where D = diag (dl,...,dN) is as in (4-5) for A, the matrix
s

T =
& & x21 (ak bk)'

associated with ;%— L , and m
j

Proof: From (4-5) we have



R k » Ve G PR
- 1242 1 il ~ 1242 0 B 1 =
& =R Ll @ JoiEs L sy T
k
L -4
= d§k2+ 2 53 B e RBe=2,:3, N

We can choose d; to be any positive number and we chooss

it to be

O ) L/2 -1
d1=<W)2 %

£
With this choice, then d2 = 2~ and hence
(4=7) a
By a well-known property of the gamma function ([14], p. 237),

Pix + 1) = xI'(x), hence

k

gy AphiRg)

T(p +%k +a,) / L(a;).

and thus

k s L
. Lk +1 + a4) I'(by)
= H - J J —_
Lo e e R T(a ) T(k + 1 + b3)
opobwmpe2 § Taad s aq)
T 4=l T(at o 2) 351 Flk % 1 =+ by)
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X bk > =2, the first product with

Since, by hypothesis, a
index 1 is some positive constant K.
An important fact from the theory of the gamma function,

which follows from Stirling's formula ([10], p. 254-255), is

£(4 +a) .a-b
Fliwnl T TR

where [ﬁj} is a sequence of values which tends to zero as
j = <. Applying this to (4-8), we have

k al+...+ as— bl—...-b
;85 £(3) = Kk

(1 +€7k)r
where Gk - 0as k = ®. If we combine this result with (4-7),

we have

dz L Kk2+m

X (L + 6k) / w2 ieivie N

With a choice of ¢, = K iEf(l + Gk) and cz = K sgp(; + 6k),
the proof is complete.
L
Lemma 4-4: For y. = yi(x.) = I (A*%.), § = 1,...,N and
J J v J
any real positive number A, and D = diag (dl""'dn) such

that there exists a nonnegative real number m and positive
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numbers czand ca such that

cajm s dj - C4jm ; J= 1,,..}N;

there exists some positive constant K such that.]tDyllg 2

',lr
-KNm+* for h = 1' / N+1 sufficiently small. Furthermore,

for any vector w, ||DW||3 B c§Nm+%||w||.

Proof: We first examine |ny||3. We have

N

N N
" o 2 .8 - - ol 2 o z
l|DY!|2 “nE G Y Ml N N wino 4 o Be, W 3

N/2 <k SN

But we note that if we let N - ®, that.is, the mesh become

smaller,
N B
: 2 = 2 i
iig kgﬁ/? Y h = £ [y(x))®dx = Ko,

and K, > 0 since, by hypothesis, y is J (Aﬁx) and A > 0 so
: v

that [y(x)]2 is positive except at a finite number of points

in % < x < 1. Hence, if we choose h small enough, then

N
kgﬁ/z yi h # 3K . If h is chosen that small. then
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"N

Ioy|12 = 3 ow2)®™ @+1) (B, v2 b = cE () o

2m+1 Ko N

Therefore, ||Dy||s 2 Kﬂm*% for K = ca(%)m_l-}5 K,

Also, we have

N N
[lowl P = 2 & w8 < max @ zwisci v n||w||®=

= o2 ™1 | |w||?

This completes the proof of Lemma 4-4

Theorem 4-1: For any L, as in (4-2), which has

coefficients such that

Y. : o s J+a
$ode i ol s oy sl s
5 (j—l) e k£l< J+b, R R

where ak'bk > -2 and 4 is some real number, and for any

eigenvalue, X, of (4-1) and corresponding eigenfunction,
s , J
yix), L€ 4o kgl(ak~ bk) 2 -2 and the vector r is defined

by

il
=
b=

1
= = -8 ;
TS ngLh 1y(xj) !
then for h sufficiently small,

min A - Al < cllr]],



wheﬁe C is some positive'gonstant and [Ak}§=l are the eigen- i
values of the tridiagonal maFrix A of coefficients of %?Lh.
Proof: By Lemma 4—2, we know that there exists a pos-
itive diagonal matrix D which symmetrizes A. We define the
vector y by I

y = (ylE) .y, y) =3 (k).

Then, by Lemma 4-1,

@) minln- | < RN

since 7 = (A-\I)y. By Lemma 4-3, there exist positive
s _
constants ¢, and cz and m = 4 + kgi(ak- bk) such that
o e a2 s c, g e

But by hypothesis, m + 2 2 0 so that we can apply Lemma 4-4

to obtain

;,.
(4-10) |IDyllo = ™%,  ||or|ls € co N™7 ||7]],

for some constant K and h sufficiently small.



a5
We can combine (4-9) and (4-10) to obtain
: c :
mlnklﬁk_ Nlo= ‘%+|T|| =c||r]].

This completes the proof of Theorem 4-1.

We now apply Théorem 4-1 to the operator Léz)l.

Corollary 4-1: The eigenvalues {Ak]i_l of the tri-
: 1
diagonal matrix A of coefficients of ot LQZ) are such that,
J
for any given eigenvalue X of (4-1) and for h sufficiently

small,

minklAkéll = 0(h?).

Proof: We have shown in Section 4.2 that for the

(2)

6pe;ator Lh- ’
v i 2+l
Tkl . Rk ktutd SRS ol
ak k k=v+

For this case, in Theorem 4-1 we have £=-2v-1 and m=-1.

Also, from lemma 3-2

(s-néz)) uixy) = (cax§+l+x§+2) 0(h®) , 3=1,...N

for ued with ¢;=0, But all eigenfunctions of (4-1) are of
this form, and further, all eigenfunctions are such that

cz=0. Therefore,



|7.] = l—%— (£-= (2’) uix.)] = 0(h®) At )
i ™ J
and Theorem 4-1 implies
minkIAk-xl'% 0(h?).

This completes the proof of Corollary 4-l.

See Example 6.2.3 in Chapter VI for numerical results
of using the operator ng) to obtain approximations of the
eigenvalues of (4-1).

4.4 Analysis of the Truncation Error
for a Class of Difference Operators

In this section, we study the behavior of the local

v+2

: v
truncation error of &£ and an operator Lh{x , X ,o(x)},

for ¢ some function in C[0,1] with ¢(0)=0 and the additional

v+2

restriction that the set xu, X , ©(x) is linearly independ-

ent on any set of three distinct ~ points in (0,1). The

v
operator Lh[x ,xv+2,¢(x)] is of the form

v vt2 .
(4-11) Lh[x i i) }uj & ajuj_l+ﬁjuj+yjuj+l

for any set of real numbers {uj} and coefficients o Bj,

yj are determined as in Section 3.2 by the eguations
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o tx”, 2 000 Maxd + b2 = slax) + bxl"?]

X +2

2 ' ' |
,w(x)][axg + bx;+2 + cm(xj)] = S{axg +bx; _+cw(xj)?,

Lh{X'U'xU
502, . . N

for all a,b,c.

%

Theorem 4-2: Let u(x) = Jv(k %) with u(l) = 0 denote

an eigenfunction of (4-1). If ¢ is such that the coefficient

ﬁj of Lh[xv,xv+2,w(x)] satisfies
|Bj"2ja| < KD ¢ 3=2,.04,N,

for some K, independent of h, then for h sufficiently small,

v+

(4-12) g [ 2000 )2 luix) = 0m®) L 3=,
J

Remark: The expression

v+

;%-[Lh{xy;x z.w(x)]—SJu(xj)

is the truncation error Tj as in Theorem 4-1.

(2)

+2 g
VTé olu, is the same as L, “'u, by

Proof: Since Lh[xu,x

Lemma 3-2

24y

L @ = 220 10w = Lom®) = om®™),
j .

since ue¥ with ¢, =0. Hence (4-12) is true at j=L.



v
The coefficients a, and of X X
j ¥ OF Byt

expressed in terms of ﬁj as

2l (Tj-5y[~l+?]
j J=1 - 43
(4-13)
5 J . vrl=2j
Yy = (j+1) [

If we use Taylor's Theorem with remainder to expand v(x.

and ¥ about x=x.,
v ( j-l) 3

4j Bj_ (U+l)j]

Bj+ (V+1)j] r\

where v (x) = x

coefficients, we obtain

e T v o vt2
Th= x;LLh[x . X

K
= M et it
(1 2x§ Bj][uj

e W TN
X h 1
- -1 8,
6 2j 3
h 1 v+l
wa -l vy
where X5 sk <=y

a constant K; such that

o BEEL HiH;El.u

3% X,
J 5 J i

, o(x)}- £] u(xj)

v+2

r

u(x),
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©(x)} can be

j+l)

and use those

1 b U o ) u']
xj j xj j
2 (v+1) (3) L B k)
L i xj] v (xj) Zﬁj‘ (&)
2olpy W o ey 19, dmes LN,

sy . We note that there exists
i1
2+¥ < & 2k ~4 24y
= - < 7
3 xj kEZ 4czk(k k)xj %j K is



The hypothesis of the theorém implies that

h® e e W e s

and hence,

h® 1
" " o(h?).

J

These two results give that the first term on the right
side of (4-14) is Q(ha). The hypothesis and the fact that
v(a)(x) = x0(1l), yield that the second term on the right
side of (4-14) is 0(h®). This completes the proof of

Theorem 4-2.

This analysis of Lh{xv,xv+2,w(xﬂ includes Lh(gl (given
by (3-14)) as a special case with the choice ©v(x) = xV+l.
(2) .2
= 2s%"
For Lh . ﬁj j
Instead of using the class ofoperatorsIh{xv,xu+2,o(x)}

in this theorem, we could have used those operators of the

v+

form Lh{xy,x l,¢(x)]. We expect that the operators of the

latter class do not approximate £ in (4-1) as well as those
of the former, since near the singularity of the differential
eguation, the eigenfunctions of (4-1) behave like

V+2 4. : :
coxu+ch +0(xu ). The truncation error for operators

Lh[xv,x

V+l,@(x)} and £ with respect to any eigenfunction



u(x), of (4-1), can be found by the same procedure used in

proving Theorem 4-2. We obtain an expression analogous to

(4-14),
T, = _12_ [Lh[xv..xwl o(x)}-£u(x.)
: Sy j
A.h? 2
= (1- 5%?"' ) ARl - ﬁy-uj + 5;§w-uj)
J J j
(4-15) e ;
+ *13——- [(2v+l)v( )(x ) + %—- ﬁ,v(4)(€)
4 % I I NS, B R S

where all quantities are as defined for (4-14). 1If the

assumption

Iﬁj k5 2ja|< Ko ' j"_-z,.a.;N,

is made as in Theorem 4-2, we find that

2v Ve 4y v
Al ew gl e e g wEs OLLY
] xj J xj 4| ]

Hence, for j fixed, we have for the first term of (4-15),

B h® 2V o 2
o il g By L S s
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As h ™ 0, then Tj' j fixed, can be no better than O(hv).

Therefore, T fails to be uniformly O(h®), unless Bj = 25%

o= 2. s2aN, dn which case o(x) = xv+2.
1f we construct the operator Lhixv, xv+2, x*}, where u
is any real number different from v and v + 2, we find that

B is such that there exists K, such that lsj - gt K,
j=2,...,N. If we further assume that M -~ V is an integer

(positive or negative, but.different from 2), then the ratio
P / :

—éﬁi is of the form ( E%I )m r(j), as is required in Theorem
ol .

4-1. We have not shown that in general the above rational

function r(x) has the conditions necessary for Theorem 4-1

to apply, or for what values of ¥, if any, it does not. If

]

r(x) is as in (4-6), and 4 = Do fa

" Ce '
k21 b )2 -2, then Theorem

k
V42

4~1 applies to Lh[xv, X

‘4.5 Error Bound for a Self-Adijoint Difference Scheme

We now treat the special case of the operator

v

Lh{xv, % +2, w(x)], constructed so as to make the tridiagonal

matrix of coefficients of ;% Lh symmetric, We show that

J
Theorem 4-~1 is applicable to this operator and that

Al il = otn®).

First, we note that i& is a self-adjoint differential

operator, since it can be written in the form

. xu} and, in particular, lTu = O(ha).
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: 2
iﬁu(x)_= (=xu'(x))' + iﬁ_u(x).

Hence, it is reasonable to assume that if ¢(x) is chosen so

AR :
that e Lh{x ‘ xk+2,-m(x)} is self-adjoint (or equivalently,

so0 that the tridiagdnal_matrix representing the finite-dif-

v
+2a ©(x)} is symmetric), then

v+2

ik v
ference operator xj Lh{x Pl

the resulting operator which we denote by L; = Lh{xv,x ,0(x) 1,

is a good approximation (in some sense) to £.

We do not determine the function ©(x) whicﬁ gives Li, but
we construct éhe‘finite-iifference scheme. The operator L; is
given by

(4-16) Lsu. = . + ﬁ M, + ¥n ’ . SRR

h™j 5 s 1 & j s

for any set of numbers [uj}, where the coefficients are de-

termined by the relations

B8, = _.g'_(v N 1, (AR Yy = —(%)v %(V + 1)
Tor T
bl Al B LS welpg ) T e T
¥ =1 (21 = 1) 3 S BT UEL I A Ty

1IN Qi e Y T T @) oh) N

These are obtained by first computing aj in such a way as to




guarantee-the matrix of coefficients of i— L'{xv,x

(4-18) i
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3 -

is symmetrid and then éomputing Bj and 7j from (4-13). The
first-order difference equation for yj in (4—17) is easily '

solved (see [8], p. 50) to give

= 4j(v + 1) il
73123 + 1) 3%(3 + 1)V [ i

2v+1-
2}{ -

Hpg -

§ Qe sl

From (4-~17) and (4~18), one can calculate

o ol OV Y
(4-19) B. = 4(v+l) L_J____ kgl k t 5 Iif?EJ R L, PPN S
J 1 : A 1_j3/4 b :l
An expansion of “—"i;z—“ and . V. into power series gives
P T~ 47/4 i TR E
: s . SR
(4-20) B, = 4(v + 1) [{3 By K + 43} + K, .

where |Kjl is less than some positive real number K, for all
3. _

The value of the"quantity in the braces in (4-20) is
equal to the estimatg of the integral of x2v+l/j2v from x = ©

to x = j by means of the trapezoid rule applied at each of

j + 1 equal subdivisions of 0 £ x S j. Since the graph of
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the integrand is concave upward, this estimate is an upper
bound on the value §%/(2v + 2) of the integrél.

The value of the sum in the braces in (4-20) is also
equal to the estimate of the'iﬁtegral of x2v+lkav from
x =% tox =3 - % by means of the midpoint rule applied at
each of the j equal subdivisions of % < x s j - E. Because
the graph of the- integrand is concave upward, this estimate
is a lower bound on the value of fhe integral. Hence, an
upper bound on the value of the guantity in the braces in
(4-20) is given by

2

2 | (322 - PP == 2l o g v 0(1) 4 i =
"3

Dutrd

2v+2

]
= e + 0(1).

2v+2

A combination of these last two results and (4-20) shows that

there are two constants Ky, Kz independent of j, such that

25% .k = Bj £ 24% 3R i P Be i
Therefore, Theorem 4-2 applies to L;.'
. ] Y4 b O I :
We further note that for L , - i - for 4 & 3,0, N
j-1

Fm o

which implies that Theorem 4-2 applies to L_. Thus, we have



D

L~ shown the following.

Corollary 4-2: The eigenvalues [Ak}§=l of the tridi-

s £
agonal matrix A of coefficients of ig L, are such that, for any

)
given eigenvalue A of (4-1) and for h sufficiently small,

minkl./\k - A| = 0(n®).

See Chapter VI, Example 6.2.4 for some numerical re-

sults of approximating the eigenvalues of (4-1) by replacing

. s
£
with Lh
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CHAPTER V _
EXACT EIGENFUNCTIONS AND EIGENVALUES
OF A BESSEL DIFFERENCE OPERATOR

In this chapter we again consider the Bessel dif-

(2)

ference operator Lh

. wWhich was constructed so that it

and the Bessel operator

£ = -x*a%/dx® - xd/ax + v®
; . v v+1
have zero truncation error for the functions ax + bx + CX
a,b,c, arbitrary. We obtain representations for the exact

eigenfunctions and eigenvalues of the difference problem

i (2) :
(5, — ¥ ’ = f.-.,N;
(5-1la) = L, Auj j =1

- =0 = 0_
(5-1b) U =Y, QN+1
In Chapter IV it was.shown that as N = ®, the eigenvalues of
(5-1) converge to the eigenvalues of the Bessel differential

eigenvalue problem

Sylm) = fylm) 0% xR
v{Q) =0 , y(1) =0,




P

These representations, which are valid for 0 < vy < 1,
are obtained by the same technique used by Boyer ([3]) who
treated only the case v = 0. We show that it follows from
recurrence relations for the Legendre functions that solutions
of (5-1) can be expanded in terms of lineaf combinations of
certain of.thése functions.

We first show that the eigenvalues of (5-1) are real and

in the interval (0,4(N + 1)2).

5.1 Properties of the Eigenvalues

The tridiagonal matrix A, which has eigenvalues and ei-
genvectors identical to the eigenvalues and eigenfunctions of

(5-1) ,has non-zero coefficients given by

— B, R =
ak'k""ﬂk/kh 'l k lfqa-'N;

2, 2 e, 2
= = o
78 R MR T L TR D
k“l‘ooo,N—lr
G (A (2) A
where Lh is of the form Lh uj juj-l - ﬁjuj + yjuj+l

for j = 1,...,N, @, B, ¥, given by (3-14). We now show the

following.

Theorem 5-1: The matrix A has eigenvalues which are all

real, positive and bounded above by 4(N + 1)%.
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Proof: By Lemma 4-2, A is similar to a real symmetric B,

so that the eigenvalues of A are real. By Lemma 3-1, A is

similar to a matrix which has all eigenvalueszwﬁth positive
real part. Therefore, all eigenQalues of A are real and éos-
itive.
We let C denote the matrix given by D"'AD, where
v

s v ; - . ]
D = diag(1,2 ,...,N ). This matrix C is the same matrix that

was analyzed in Lemma 3-1, since it is the matrix of coeffic-

L. (%) (2)

ients off | 2. K" where K. is given by (3-16). The non-

zero elements of C are

4 4
Cl,l =T (v+l) , c:l'2 B sig(v+l)
e 2 J+ V25
5=2 (o = - : e Doggll e e o (@ i o ’
( ) 3.3-1 jh 263 R 3, 3+1 jh

If v = ¥, then each row sum, k§1 |cj’k] PO U LR L

of C is less than or egual to ﬁw = 4(N # 1Y%, nhen 0 S v 5

Hence, all eigenvalues of C are no larger than 4(N + l)

Now we consider ¥ < v < 1. The Sturm seguence, 1f }N =0’ "

for the tridiagonal matrix C is defined ([2);, p. 202) by
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fo (%) i 1
#_1 (x) = (x - cl,'l) fo (x)
' fj+l(x) = (x - cj+1'j41) fj(x) - £ _(x) .

- - R oo ¥ .
993, 9 .34 ]

AT

The value fN(x) is equal to det{-C + AI} and thus (727, p. 203)

since the elements of C are real and its eigenvalues are real ,

the number of sign changes in the sequence {fjJ is equal to
the number of eigenvalues of C that are larger than x,. We

now show that there are no sign changes in [fj}§ when x=4(N+1)%,

so that this is an upper bound on the spectral radius. - With

x = 4(N + 1)?, the Sturm sequence is

foﬁll
4 :
£, =‘§*ﬁa(2-V) fo
; e o :
f =-2-z-f-—}-r(l+ld.‘ .v.)f. AR (s O ROy R L
1%43 J-1

i+l h j L -

We use an induction argument on j to prove that the above
Sturm sequence does not change sign.

Note that
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D‘njl—-
Hh

For a gi lue of j e,
or a given value of j, Suppose f:i ST, Whes, & come

putation of £, - gives

G o ¢

- -2' R | 1/4 - v°
£ =B'z'f.——a'<l+—é—~—./fj_l

S

2 3 1/4 - v® N 1
ne fy T RE <l Iow 3 W TR e
where the first inequality follows from the induction hypo-

thesis and the second from the fact that v > 3. Therefore,

we have shown by induction that
> =8 b
f.h r J - 0,-.-'N-’l-

Therefore, all the eigenvalues of C are smaller than 4(N + 1)%,.

Since A is similar to €, the proof of Theorem 5~1 is complete.

5.2 Representation of Exact Eigenvalues and Eigenfunctions

Let Pi and Qi denote the associated Legendre functions of
degree r and order s of the first and second kinds, respectively.

It is well-known ([12], p. 165) that any linear combination,
' s (=] s
(5=3) M. =@P, + Ae

of these two functions satisfies the difference equation



6l

(5-4) (s - ¢ - 1) Yi+

1 (g) + (2r+1) in (xj - (s+r) Yi (x)

w) €€ .

We now show, for fixed x and s, that the general solution of
the differencg equatibn (5=4) for v .= £o,09 + 1w, -18 give
by (5-3).

- Another well-known ([127], p. 163) recurrence relation
which is satisfied by any linear combination of Pi and Qi :

Ys , as in (5—3), is'

n

0,

s
(5f5) (%x® - 1) gzﬁzlﬁl - (r+l) in (x) + (s-r-1) Yi+l (x) = 0,

) . e T TN

It follows from (5-5), that for any fixed s and X = X;, the

s - ; o
pair Pz (x0) and Qr (x0) are linearly independent on the set

r = Yo,¥ + l,..+, since if they were not, then

P (x9) = aQ (%) for -k = 0,1,..., and' some constant
a. If this were true, then by (5-5), —*EQE;—— = a——£3a;-

i s S
But since P and Q
r r

are both solutions of the same second-
(o] .

(o]

order linear homogeneous differential eqguation on (=-1,1), we

then have that Pin (x) = aQi (x) for all x in (-1,1). But
0

this contradicts the fact that Pi and Qi are an independen
- o Yo

£
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set of functions with respect to x. Hence, for fixed s and
X, the genefal solution of the second=order linear difference
equation is given by (5-3).

If we set s = =V and r = j - % in (5-4) and make the

substitutions

-y i i i -V ; :
PJ_%(cosw) =] Tj(&) " Qj_%(cosw) =3 R,(w),

YEE%(COSW) = j-ij(“)

in the difference equation (5-4), we obtain

v J_+ v 4+ da : e P50
(5-6) <3+1) Sj+l(W) + " cosusj( )

A g S e .t ALt
(j_l) jhE Sj-—-l{u-) S 0; j L l’2'-t-'N.

A rearrangement of (5-6) yields that Sj(w) is the general sol=-
ution of

1 ()

','_ 4 Ly L Lo
(5=7) o & Lh Sj(w) = C%F sin 2) Sj(w) oL ke 1 AV

We can determine one of the arbitrary constants in the gen-

eral solution
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4 4
(5-9) FE(¥ + 1) S1(@) - ()Y = + 1) S2(w) =
Tl e %
= [ ete® 5 ] s
N+1 S
Then, [Sj(w)}j=o satisfies
sO(un = 0
;:t-%- L}(lz)sj(w) = [4(N+1)2 sin? %—J S.j(“’) M TR R
) i

For any A in (0,4(N + 1)3), there exists an « in (o, 7)

such that

2

‘ w
A=4(N + 1)% sin -~

Hence, since by Theorem 5-1, all of the eigenvalues.hk of the

problem (5-1) lie in (o0,4(N + 1T ) W any eidgenfunction of
(5~1) can be represented by

N+1

(s, (w1 ]

where sj(w) is defined by (5-8), one of the constants is de-

termined by (5-9), the other remaining arbitrary, and
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CHAPTER VI
NUMERICAL RESULTS

The numerical experiments conducted in relation to this
study consisted of the estimation of the smallest eigenvalue
and a corresponding eigenfunction to the finite-difference

eigenvalue problem

(B=la), T.uy = Mlu. -, ek we il

0y : s

(B=ib) Mo =0 o W, =il

where h = (N + 1)7', for finite-difference operators Ly« which

were discussed in Chapters II1I and IV, as approximations to

the Bessel operator & = -x° da/d_x2 ~ xd/dx + gl

6.1 Rate of Convergence

For each finite-difference operator, L considered,

h ]
and for each value of h™' = N + 1 = 4,8,16,32,64,128, we

obtained accurate estimates of the smallest eigenvalue, nh ,

L(n)

and corresponding eigenfunction, , normalized by
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(h)

u(N+l)/2 R R (6;1). Tﬁe gigenvalue error, which is
listed in Tables 1 through 4, is computed by lnh - A, it
A is the square of the smallest zero of Jv(x)' which is the
smallest eigenvalue of problem (4-1). The values of A used
are found in [15]. The error in the eigenfunction is taken

to be
. :
75 (h),2 Y
| 4Zy (ed, () U e G N

where c ;s a constant chosen so that ch(A%/z) = 1. Then
ch(A%x) is the normalized eigenfunction of problem (4-1).
J?(x) was calculated by summing the first twenty terms of its
powef series expansion.

In order to examine the rates of conﬁergence for the
eigenvalues and'eigenfunctions, the experimental rate of con-
vergence (ERC) was computed and tabulated. This number is

defined by
ERCh = 1og(e2h/eh)/log 2,
where ey is the error for a given mesh size h. This numbex

is the power of h by which the errors are approaching zero,

computed from the errors with mesh size h and 2h.
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6.2 Experimental Results

Example 6.2.1: The operator, Lél) , as defined by

(3-9), is the three-point difference operator which agrees
with the Bessel operator £ at the mesh points for all guad-
ratic polynomials. The errors in the eigenvalue and eigen-

1)

vector estimation using Lﬁ are listed in Table.,l, for the
values of h listed in Section 6.1 for 8 values of V. We

see in Table 1 that the eigenvalues are apparently converging
with order 2v and the eigenfunctions with apparent order
5v/3, for 0 < vy < 1. From the values in Table 1, the eigen-
values and eigenfunctions appear to converge with order 2

when V¥ 2 1.

Example 6.2.2: In Table 2 are the results of solving

the difference eigenvalue problem for the finite-difference

v
+l,x“],

operator Lh{xv;x that ig, the three-point finite-dif-

ference operator which agrees with the Bessel operator, &,

: v v+l
when applied to functions of the form ax + bx at x, and

axv + bxv+l,+ cx“ at xj, 4= 3, for v = 1/4, 1/2, 3/4 and
=v-~-1,0vV +1/2, ¥ + 3 for each value of ¥. We recall
from Section 4.4, that the truncation error of such a scheme
over a class of functions which includes the eigenfunctions
of the differential problem is guaranteed by the analysis

there to be no better than O(hy) at the first point. 1In

Table 2, we see that the observed rate of convergence of both
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Table 1. Errors and Experimental Rates of Convergence for
Example 6.2.1.

eigenvalue eigenvalue eigenfunction eigenfunction

N+1 error ERC error ERC
8 9.1E-1 .:30 9.5E-2 -0.11
16 6.4E-1 0.50 8.3E-2 0.21
¥=0.25| 32 4.48-1 0.53 6.6E -2 0.33
64 3.1E+1 G563 5.0E-2 0.39
128 2.1E-1 0,53 3.7E=-2 0.43
8 6.1E-1 0.29 6.7B-2 0.02
16 4.,.0E-1 0.58 5.3E-2 .33
v=0,33,.. 32 2.6E-1 0.65 3.9E-2 0.46
64 1l.6E-1 0.67 2.7E -2 0.52
128 1.0E~1 0.67 .8E-2 £.56
8 2.0E-1 -0.41 3.1E-2 6.35
1g 1.3E-~-1 0.64 2.0E-2 .83
¥=0.5 32 7.1E-2 0.86 1.2E-2 0.73
64 3.7E-2 0,94 6. 9E -3 B, 7
128 1.9E-2 0. 97 3.9E~-3 0.83
8 9.0E-3 4,74 1.3E-2 0.8l
16 1l.6E-2 -0,82 6.5E-3 0.98
v=0.66.. 32 1.1E~-2 0.54 3.1E-3 1,05
64 5.4E-3 1.00 1.5E-3 1.08
128 2.4E -3 1.186 7.0E~4 Ll
8 7.0E-2 2.45 8.4E-3 .1k
16 1.0E-2 279 3.6E-3 1.23
p=0,75 32 9.3E-5 6.75 1.5E-3 1.25
64 8.1E-4 ~3.12 6.3E -4 1.24
128 4. 9E -4 071 2.7E-4 1.24
8 1.6E-1 2,02 4 .1E-3 182
16 4.0E-2 2,00 1.0E-3 1.97
v=1.0 32 1.0E-2 2.00 2.6E -4 1.99
64 2.5E-3 2.00 6.5E-5 2,00
128 6.3E-4 2.00 1.6B-5 2.08




Table 1. (cont'd)

8

16

v=l1.5 22
64

128

8

16

v=2.0 32
64

128

2.4E-1
6.1E-2
1.5E-2
3.8E-3
9.4E-4

3.4E-1

8.4E-2
2.1E-2
5.3B-3

1.3E~-3

2.00
2.00

%2400

2.00
2.00

2:00

2.00
2.00
2.00
2.00

N B O

LES I 02l O BV o

.5E =3
.6E-3
.1E4
.0E-4
.6E -5

.7E-3
.4E -3
.9E-4
.5E-4
< JE=5

NN

NN N

.10
.00
«98
« 99
<99

.20
.04
.00
.00
.00

68
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the eigenvalues and the eigenfunctions is considerably better
than order hu, but that the rate of convergence does appear
to increase as V is increased. We note from Table 2; that
the best experimental rate of convergence occurs when

I P T 01

Example 6.2.3: In Table 3 we have the errors and exper-

imental rates of convergence for the difference eigenvalue

v+2 M
PE s

problem (6%1) with Lh = Lh{xu,x the three-point finite

difference operator which agrees with the Bessel operator, {,

when applied to functions of the form ax’ + bxu+2 at the

i ; v Sy
first mesh point and ax + bxv+2+ cx“ at the remaining mesh

points, for ¥ = 1/4,1/2,3/4 and Y = v -~ 2,0,1,v + 1, v + 4,

7
vV + 6, for each value of v. The operator L {x ,x +2,x“} was

h
investigated in Section 4.4 as anapproximation to £, and the
two operators were noted to have truncation error order h”.

In Table 3, we have apparent h® convergence for both the ei-
genvalues and eigenfunctions in all cases except v = 0.5,

B = 1.5, In this case, the eigenfunctions of the differential
problem are identical to those of the difference problem on
the mesh. Hence, the error given in Table 3, for this case

is only the round-off error, which grows as h becomes smalleer,

as one might expect. The cases in Table 3 where Y = v + 1 rep-

(2)

“ and which is given

resent the operator which we denote by L
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Table 2. Errors and Experimental Rate of Convergence for
Example 6.2.2.

eigenvalue eigenvalue eigenfunction eigenfunction

N+1 error ERC error ERQ

8 1.4E-1 1.46 1.6E-3 0.85

v=0,25 16 4.3E-2 1.66 1.2E-3 0.37
32 1.3E-2 1.79 5.1E-4 1.26

u=-0.75 64 3.4E-3 1.87 1.7E=4 1.58
128 9.1E-4 1.91 5.1E-5 1.74

8 9.6E-2 1.80 2.5E-4 2.55

y=0.25 16  2.6E-2 1.88 2.4E-4 0.05
: 32 6.8E-3 1.93 1.0B~4 12
pu=. 0.0 64 1.7E-3 1.95 3.3E-5 1.60
; 128 4.4E-4 . 1.97 9,7E-6 '1.76
8 7.2E-2 2.10 5.0E-4 0.82

v=0,25 16 1.6E-2 237 3.0E-4 0. 78
32 3.6E-3 2.6 1.3E-4 " E2Y

u=0.75 64 8.2E-4 2:02 4,2E-5 1.57
128 1.9E-4 2.10 1.3E-5 198

8 1.4E-1 1.45 1.6E-3 0.85

y=0.25 16 4.3E-2 1.66 1.2E=~3 0.37
: 32 1.3E-2 1.79 5.1E-4 1.25
u=3.25 64 3.4E-3 1.86 1,7E-4 1.58
128 9.1lE-4 1.91 5.1E~5 1,74

8 4.1E-1 0D.99 1.2E-2 0.14

v=0.5 16 1.7E-1 1.28 7.0E-3 0.75
32 5.5E=2 1,63 2.7E-3 138

y=-0.5 64 1.6E-2 1.81 8.7E~-4 1.65
128 4.1E-3 1.91 2.5E-4 1,81

8 1.lE-1 2.14 6.1E-4 0.00

v=0.5 16 2.5E-2 212 3.4E~4 0.83
' 32 5.9E-3 2.07 1.2E~-4 1.49
u=0.0 64 1.4E-3 2.04 3.6E-5 1.75
128 3.6E-4 2.02 9,8E~-6 1.87

8 9.3E-2 Gost. - 1.1E-3 0.00

v=0.5 16 1.9E-2 .27 ¢ 6.4E-4 0.85
32 4.3E-3 2.17 2.2E-4 1. 51

u=1.0 64 1.0E-3 2.10 6.6E-5 1:79
' 128 2.4E-4 2.05 1.8E-5 1.89
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Table 2 (cont'd)

N+1

8

v=0.5 16
32

§=3.5 64
128

8

v=0.75 le
32

M=-0,25 64
128

8
v=0.75 16
32

H=0.0 64
128

v=0Q,75 16
32
B=1,25 64
128

v=0,75 16
32
M=3.75 64
128

erroxr
1.8E~1
5.3B-2
1.4E-2
3.78-3
9.4E-4

ERC

1,59
.78
1.89
195
1,97

2.25

2.14

2.06
2,02
2.01

2.28
2.16
2.06
2.02
2.00

2.32
2.18
207
2.02
2.01

1.70
1.87
1.95

1,98 .

1.99

H Oy ~1 =

error
«2E~3
2 2E—3
.0E-4
.2E-4
2B

R N

s 3E=3
.9E-4
.BE~-4
wOE~5
+3E-5

H 0 U

+ 5E~3
.BE~-4
.1lE~4
o 1 BB
« BB=5

v N Oy

.6E~3
. 5E-4
.3E-4
+ 3B~5
s E6B=b

eigenvalue eigenvalue eigenfunction eigenfunction

ERC

i ol il o O

H - H O

el el e

T el ol el )

e e

.02
9L
.54
.78
.89

.29
will
.69
.88
+ 36

.50
T
.68
.88
+ 95

.45
.12
.69
.88
+95

.46
.32
.74
.90
.96
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by (3-14). We have, by Corollary 4-1, shown that its eigen-
values converge with those of the differential problem with
order of convergence at least 2.

Example 6.2.4: In Table 4, we have the errors and ex-

perimental rates of convergence for the eigenvalues and ei-

genfunctions of the operator L; . which was discussed in

Vo 2
Section 4.5, where Li is the operator of the form Lh{x s +2,o(x)l,
where @(x) is determined so that iLE is self-adjoint, for v = %,

1/3,1/2,2/3,3/4. By Corollary 4-2, we have that the eigen-
values of ;%LE converge with any eigenvalue of the differ-
ential probiem with order of convergence at least two., In
Table 4 this convergence is observed to occurlfor the smallest
eigenvalue A of the differential equation problem. When ¥=0.5,

é2) , and hence we have the same behavior

L; ts identical to L
of the eigenfunction errors as noted in Example 6.2.3 with

v = 0.5 and M = 1.5, that is, the eigenfpnctions of the 4dif-
ferencé and diffefential operators are identical, and hence
the errors in Table 4 are round-off errors for this case.

For all values of v in Table 4 except v = 0.5, we note that

the eigenfunctions appear to be converging with order of con-’

,fergence 2 + 2v, a much faster rate of convergence than ob-

served for any of the other operators which were used,
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Table 3. Errors and Experimental Rates of Convergence for
Example 6.2.3. :

eigenvalues eigenvalues eigenfunction eigenfunction

N+1 error ERC error ERC

8  3.0E-=2 .48 . 7.5E-4 2.42

v=0.25 16 6.6E-3 2.18 1.5E-4 2.28
| 32  1.6E-3 2.06 : 3.6E-5 : 2.11
p=-1.75 64 3.9E-4 2,01 8.7E-6 2.03
128 9.BE-5 2.00 2.2E-6 2.01

8 8.1E-2 1.93 . 9.8E-5 2.82

v=0.25 16 2.0E-2 1.98 1.4E-5 2.55
32 5.1E-3 2.00 3.0E-6 2.18

p=0.0 64 1.3E-3 1 2.00 7.3E=7 2.04
128 3.2E-4 2.00 1.8E-7 2.00

: 8 8.6E-2 1.92 1.7E~-4 2.94
v=0.25 16 2.2E-2 1.98 2.8E-5 2.57
, 32 5.5E-3 2.00 6.3E-6 2.16
p=1,0 64 1.4E-3 2.00 1.5E-6 2.03
: 128 3.4E-4 2.00 3.8E=7 2.00
8 8.4E-2 1.93 1.4E~4 3.00

v=0.25 16 2.1E-2 1.98 '2.3E-5 2.62
32 5.3B-3 2.00 5,1E=6 8.1%

p=1.25 64 1.3E-3 2.00 1.2E-6 2.03
128 3.3E-4 2.00 3.0E-7 2.01

8 3,4E-2 1.41 1.5E-3 3.03

v=0.25 16 8.8E-3 1.93 3.0E-4 2.28
32 2.2E-3 1.99 7.4E-5 2.04

U=4.25 64 5,5E-4 2.00 1.8E-5 2.01
128 1.4E-4 2.00 4.6E-6 2.00

8 2.2E-1 2.20 3.6E-3 . 3.55

v=0.25 16 5.4E-2 2.00 8.0E-4 L
32 1.4E-2 2.00 1.9E-4 2.03

p=6.25 64 3.4E-3 2.00 4.8E~5 2.01

128 8.5E~4 2.00 1.2E-5 2.00



Table 3.

v=0.5

WG-S

(cont'd)

N+1
8
16
32
64
128

8
16
32
64

128

16
32
64
128

16
32
64
128

16
32
64
128

16
32
64
128

error

9.1E-2
2.2B-2
5.5E-3
1.4E-3

- 3.4E-4

1.4E-1
3.4E-2
8.5E~3
2.1E-3
5.3E-4

ERC

2.12
2.04
2.01
2.00
2.00

1.96
198
2.00
2.00
2.00

1.96
1.99
2.00
2.00
2.00

1.98
1.99
2.00
2.00
2.00

1.97
2.01
2.00
2.00
2.00

2+5%
2.03
2.00
2.00
2.00

erxor

4.3E-4
8.9E-5
2.1E-5
5.1E~=6
1.3E~6

1.0E-4
2.2E=-5
5.2E-6
1.3E-6
3.2E-7

1.0E-4
2.1E-5
5.1E-6
1.3E-6
3.2E-7

3.0E-12
3.1E-12
3.3E-12
3.5E=-12
4.6E-12

1.9E-3
4.1E~-4
1,0E-4
2,5E=5
6.4E-6

ERC
2.56
2.28
2.09
2.02
2.01

2.69
2:27
2507
2.01
2.00

2.79
2.26
2.05

- 2.01

2.00

.03
-0.05
-0.06
~-0.09
~0.42

3429
2.0
2,01
2.00
2.00

3.86
2.04
2.02
b0
2.00

74

eigenvalue eigenvalues eigenfunction eicenfunction



Table 3.

v=0.75

H=-1.25

v=0.75

B=0.0

(cont'd)

N+1
8
16
i
64
128

8
16
32
64

128

¥=0.75

H=1.00

v=0.75

p=1.75 -

v=0.75

u=4.75

8
16

32.

64
128

16

32
64
128

16
32
64

. 428

v=0.75

B=6.75

16

32

64
128

error

1.7E=1

4,3E-2
1.18-2
2.7E-3

6.8E-4 .

ERC

2.02
2.01
2.00
2.00
2.00

1.96
1.99
2.00
2.00
2.00

1.97
1.99
2.00
2.00
2.00

2.00
2.00
2.00
2.00
2.00

2.:33
2.04
2.01
2.00
2.00

2.66
2.04

2.01

2.00
2.00

error
1.9E~-4

9- 3E—6
2.3E-6
5.7E-7

.3E-4
«9E~5
.9E-6
.7E-6
« 3B=17

O A

5.7E=5
1.3E=5
3.2E-6
8.0E-7
2

eigenvalue eigenvalue eigenfunction eigenfunction

ERC

2.65
2589
2:07
2.02
2.00

2.49
2.16
2.04
2.0
2.00

2.29
2,41
2.03
2.01
2.00

3.02
2.18
2.02
2.00
2.00

3.36
2.07
2,01
2.00
2.00

3.96
2.00
2.02
2.01
2.00



6.3 Numerical Technigues

The technique used to estimate the smallest eigenvalue
of the N X N Matrix A associated with the difference eigen-

value problem (6-1), is described in this section. We chose

an initial approximation, yéol = sinTjh as an estimate of

the eigenvector associated with the smallest'eigenvalue,_ A

,(0)

corresponding guess for the eigenvalue, , was made by

computing the Rayleigh quotient, that is,

L R o e

(Y(O) : y(o))‘

An improved estimate of the eigenvector, y(l)
() - A(O)y(o)

, was then ob-

tained by solving the linear system Ay . Since

A is always tridiagonal, Gauss elimination works well for this

purpose, and hence was used. This estimate,'y(l), was then

used in this Rayleigh quotient to obtain an improved estimate

34

of the eigenvalue, . The above process was repeated to

)0 ) it o pleedly e

find successive values of }'"'and y until

‘lized so that its middle component was unity. The above con-

(n)

vergence criterion on the A was always satisfied for n = 2,

(r)

when N + 1 was larger than 8. The firnal wvalue A and vector
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Table 4. Errors and Experimental Rates of Convergence for
Example 6.2.4.

eigenvalue eigenvalue eigenfunction eigenfuction

N+1 error ERC error ERC

8 7.4E-2 1.95 1.2E-5 2,29

: 16 1.9E-2 1.97 2.3E-6 2,37
v=0,25 = 32 4.7E-3 1.98 4.2E=7 2.44
64 1.2E-3 1.99 7.5E-8 2.48

128 3.0E-4 1.99 1.3E-8 2.49

. 8. 9,0E-2 1.96 9.4E-6 2.05

: 16 2.3E-2 8 1.7E-6 2,47
v=0.33...32 5.7E-3 1.99 2.8E-7 2.60
64 ' 1,4E-3 1.99 4.5E-8 2.64

128 3.6E-4 2.00 ~ 7.1E~9 2.66

8 l.2B=1 1.98 3.0E~12 1.03

16 3.2E-2 1.99 3.2E-12 -0.11

v=0.5 32 7.9E-3 2.00 3.3E-12 -0.05
64 2.0E-3 2.00 3.4E-12 -0.02

128 5.0E-4 2.00 4,2E-12 -0.32

8 1.7E-1 1.98 7.1E-6 2.99

16 4.2E-2 2.00 7.8E~7 3.18
v=0.666,:32 1.1E-2 2.00 8.3E~8 3.24
64 2.6E~-3 2.00 8.5E=9 3,27

128 6.6E-4 2.00 8.7E-10 3.30

@ 1.8Red 1.98 7.6E-6 3.16

16 4.8E-2 2.00 7.6E-7 3.32

v=0,75 32 1.2B-2 2,00 7.6E-7 237
64 3,0E-3 2.00 6.8E-9 3.41

3.43

128 7.5E~-4 2.00 6.3E-10
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“(n)

y | were than taken as the estimates of the smallest ei-
genvalue and coriesponding normalizéd eigenvector of the
matrix A.

IE éhould be'néted thaf no knbwn result guarantees.the
convergence of the above.itération.scheme for computing the
éigenvalues and eigenvectors of a given matrix A, for the
matfices to which we have applied it, since they are all non-
symmetric. However, if the above process does converge (and
it did in all cases considered), one can easily verify thaf
the value to which it converges is indeed an eigenvalue and
the vector generated a corresponding eigenvector. When in-
spection of the eigenvector reveals that all of its components
are of the same sign, then the eigenvalue must be the smallest
one of A.

The above numerical experiment was run on the CDC 6500

at Purdue University.
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