
Finite State Machine Simulation

Ryan McFall
Department of Computer Science
Michigan State University
East Lansing, MI
mcfaUry@cps.msu.edu

Introduction

TUMS (TUring Machine Simulator) is a program that
we have developed to make the process of learning about
finite state automata and Turing machines easier for the
undergraduate student. It is our betief that allowing students
to visualize the actions of such a machine will greatly
enhance their understanding of how it works. TIJMS
provides a graphical interface that allows the student to
construct and execute these machines. The software runs
under the OpenWmdows platform on a Sun SPARCstation.
The motivation for the project arose from the use of a

L
aekage called Turing’s World (1986) which runs on the

intosh platform. The intent of TUNIS is to provide the
functionality of Turing’s World on SPARC architecture, as
well as to provide some features not present in Turing’s
World.

Another Macintosh based program catled H~rcard
Automata Simulation has been developed at Union College
by Hannay (1992).

This paper describes the TUNIS software as well as its
use in various courses in the Hope College Computer
Science curriculum,

The Software

When TUMS is started the screen appearsas in figure
1.Along the left side of the screenare the buttons that control
the construction of a machine. The large window to the right
of theseconmol buttons is the “canvas” where the machine is
built. Along the bottom part of the screen is the area where
the input tape(s) is(are) displayed. Finally, the panel on the
exmemeright of the window simulates the action of a push
down stack for those machines where one is present.

The fit step in constntcting any machine is to place
the start stateon the canvas. Since every machine requires a
start state,TUNIS will not allow anything else to be specified
until the stat state has been placed. Of course, it is possible
that the start state might ako be one of the final states; this
can be accomplished by selecting the final state button
before positioning the start state on the canvas. Positioning
the state on the canvas is achieved by moving the cursor
(which takes the shape of the object that is about to be
placed) to the desired location and clicking the left mouse
button once.

Once the start state has been placed, the user is free to
continue building the machine in any order he or shewishes.
The buttons on the left always control the “current action.”
Permission to copy without fee all or psrt of this material is
granted provided that the copies ars not made or distributed for
direct commercial advantage, tha ACM copyright notice end the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. TO copy otherwiee, or to republish, requiree a fea
arrdor epecifio permission,
SIGSCE 94- 3/94, Phoenix Arizon%USA

~ 1994 ACM 049791 -646-W4m..$3.5O

in an Introductory Lab

Herbert L. Dershem
Department of Computer Science
United States Air Force Academy
USAF Academy, CO
hdersbem(ijkwsafa.af.mil

For example, to place a final state, the user fkst selects the
final sta~-button-and then places the stateon the canvas.

Defining the transitions between the states is equally
intuitive. Fmc the userselectsthe transition button. Clicking
with the cursor inside of a state designates that state as the
source sta~, a second click in any state chooses the
destination state. After the destination state has been
selected,a window like that in figure 2 appears. Depending
on the type of machine being constructed, different fields in
the panel will be active to allow the user to specify which
action(s) should be taken for this transition,

After the machine has been completely defined, the
next step is to specify the input string to be used.This is done
by moving the pointer to the input tape in the bottom areaof
the screen.A character is put on the tapeby clicking the left
mouse button repeatedly until the desired character appears.
The program will cycle through all available characters in
the alphabet as the button is pressed.Note that it is possible
to select any set of symbols for the machine’s alphabet by
pulling down the Select Afphubet menu and then selecting
Choose A@tabe[from the menu. TUMS defaults to having
an alphabet of ‘a’, ‘b’, and ‘*’.

After the input has been specified, the user must select
the starting position on the tape.TUMS nmds from the input
tap in a right to left manner. To designate the starting
character, you use the mouse to position the arrow
underneath the input tape below the desired start symbol.

Figure 3 depicts a simple machine with an input string
specifkd, ready to run. First we will describe how a
deterministic finite state automaton executes in TUMS.
When the Run Machine button is selected, the machine
begins its execution. The state that the machine is in at any
given time is represented as a fdled circle, while the input
tape’s arrow always points to the next character to be read.
As the machine runs, the user is able to follow the path of
execution by watching the highlighted stateand the arrow.

There are two options available when ruining a
mrtehme.The fmt option determines how long the program
waits before reading the next symbol from the input tape.
The default value is approximately one second. By pulling
down the Options menu and then selecting Run Options, you
can either change the time interval (from a minimum of zero
seconds to a maximum of two seconds), or specify that
TUMS should wait for a key to be pressedbefore reading the
next character.

The second option determines the way sub-machhte
execution is yisuahzed. The default action is to have the
current machme cleared and the sub-machme drawn on the
canvas while it is executing. During this execution, the sub-
machine behavesexactly as if it were a stand-alone machine.
However, with an appropriate menu selection, sub-machines
exezute invisibly and instantaneously. That is, the “main”, or
“cdlittg” machine stays on the screen and the sub-machine
executes in the background, with no delays between
consecutive main machine readsof the input tape.

126

When the machine completes execution, a window
Wp with information regarding whether or not the input
strtng was accepted. If not, it contains a btief description of
what caused the string to be rejected.

Non-deterministic machines opemte slightly
differently. Rather than forcing the computer to make a
choice of which path to take when more than one possibility
is Presenq a parse tree is constructed displaying all possible
paths. At this time, TUMS only displays thosepaths that lead
to the input string being accepted. In the next revision, all
accepting paths will be displayed in black, non-accepting in
WY.

TUMS can also run machines other than DFA’s or
NDFA’s. Push Down Automata can be implemented, as well
asone or two tapeTuring Machines. We omit a discussion of
these other machines for space considerations. The basic
steps,however, are identical to those usedin building a finite
state automaton. In all cases,the user has the ability to save
both machines and tapes to disk. The ability to print a copy
of the state transition diagram is planned, but currently not
implemented.

The Laboratory Exercise

During the fall semesterof 1992a new component was
introduced in the introductory computer science ctass at
Hope College. This is a two-hour weekly lab section,
designed to give an introduction to some topics in computer
science that are generally not presented to an introductory
level computer science student. Topics covered included
software testing and evaluation, modeling and simulation,
cellular automata, and finite stateautomata. The last topic is
where TUMS fits in.

Finite-state automata are difficult to understand,
especially for students with little computer science
background. The abiiity to visualize these machines and
watch them perform through animation places the
corresponding concepts within the grasp of the begiming
student.

The laboratory was designed to give the students an
introduction to the principles behind finite state automa~
and then allow the students to explore theseconcepts in more
detail on their own. An abbreviated copy of the laboratory is
included asan Appendix to this article.

Upon starting the program, the students were asked to
load some simple machines that we had previously
constructed and experiment with them. Once they had
determined what language each of them accepted, we then
asked them to construct and test a couple of machines on
their own.

The final exercise asked them to design art FSA that
accepts input of the form anbn. Of course, this is a classic
exercise designed to demonstrate the limitations of finite
statemachines. After the students had tried various methods
of doing so, we explained to them why such a machine was
impossible, and demonstrated using TUMS a simple push-
down automaton that could accomplish the task.

Evaluation

Students had fun working with the program and gained a
genuine understanding of the concepts. Several of the
students stayed after the regular class period to experiment
with the software. The ability to test and redesign their
machines gave them a senseof accomplishment when they
had completed the tab.

In addition, somebenefits were realized that we had not
intended. One of thesebenefits deservesparticular mention.
Since TUMS was conceived and written entirely by
undergraduates, the students in the introductory class got a
chanceto seethe type of “fun” projects that can be attempted
astheir problem solving and programming abilities progress.
This is impottant becausestudentsoften believe that the only
thing computers can do is solve the problems typically
presented to introductory students. It is important to convey
that computers cart be usedas educational tools.

The students enjoyed working interactively with the
computer. After designing a machine, the students used
TUNIS to obtain feedback about whether or not they had
achieved the designated pwpose. The visual nature of the
program facilitated group work and interaction. Each
member of a group could see what was happening on the
screen and figure out why the machine had or had nc~t
accomplished its intended purpose. At one time or another
eachof the students found themselves in the role of teacher,
explaining to the other members of the group what had gone
wrong. They appearedto feel comfortable using the software
to demonstmte their ideas to the other group members.

Becauseof the lack of any further evaluation, it cannct
be determined if the students fully retained the concepts that
were intended, However, complete retention was not our
goal. Rather, we hoped that using TUMS would allow the
students to explore the ideas we were presenting and aid
them in acquiring a fundamental understanding of those
ideas. Based on the success the students experienced in

completing the lab exercises, it appears this goal was
successfully accomplished

The majority of difficulties we had with the lab c,anm
tlom the students’ unfamiliarity with the OpenWindows
environment. However, this did not prove to be a major
hindrance to the learning process; once they got accustomed
to using the mouse, they were able to operate the software
with little difficulty.

The studentsdid manageto uncover several bugs in the
program. These bugs were generally caused by events that
were unforeseen, such as the user repeatedly pressing thle
mouse button because they thought the program was not
working. Occasionally the effects were severe enough that
we would have to kill the processand have the studentsstart
over. By the secondsemesterof use,most of thesebugs had
been ironed out.

Future Directions

There are many improvements and refinements to
TUMS that are in our future plans. The most important of
theseinclude improving the software’s ability to handle sub-
machine and non-deterministic machinesand improving the
software’s robustness.

The laboratory will continue to be taught in future
semesters.For the most p= we wem happy with the content
of the lab and the reception it received from the students.‘l%e
only change that may be necessaryis to give the studentsan
introduction to Unix and OpenWindows before the lab so
that they can focus more of their attention on finite state
automata.

It is atsoplanned that the software itself will eventually
become a major component of the Theoretical Computer
Science class here at Hope Cotlege. This will take ptace as
soon as sub-machines and non-deterministic machines am
fully implemented. We would also tike to add the capability
of printing the state-transition diagram for a machine.

127

Acknowledgments
Now we are ready to tun the machine. Find the Run

Machine button on the left side of the screenand select it.
Describe what happens:

We would like to thank Hope College students Don
Lingle, Jason Bomers, and Brett Fotkert and faculty
members Gordon Stegink and Mike Jipping for their
contributions to this project. ‘lWs work was partially
supported by the Research Experiences for Undergraduates
program of the National Science Foundation, grant number
CDA-9200118.

References

Barwise, J. and J. Etchemendy, “Turing’s World: A
Computer-Based Introduction to Computability Theory.”
Kinko’s Academic Courseware Exchange, Santa Barb%
CA 1986.

Hannay, D., “Hypercard Automata Simulation Finite-State,
Pushdown and Turing Machines” SIGCSE Bulletin
24(2),55(1992).

APPENDIX

The Laboratory

II. The Finite State Automata Program

At this stage, hopefully you’re comfortable enough
with the OpenWindows environment to use a program
written for it. Change to the directory /home/smaug/mcfall
and double click on the icon theory.

Fwst, we will load a couple of sample machines to see
how the program works.

-- move to fde menu and press left mouse button
-. when a window pops up with a list of file

names,
select (left button again) the one named
a_star_b_star.mac and select it

Each circle on the screen represents a state of the
machine, and the arcs between them represent the
transitions. Above each transition is the character on which
that transition will be applied. The start state has a “>” in
front of its cixcle, while a final state is composed of two
circles. Note that a start state can also be a final state (as it is
in this case).

Every machine can have its own “alphabet” of
characters that it understands. By defaul~ these machines
have an alphabet that consists of the characters ‘a’, ‘b’, and
●*$

To run a machine, you must specify an input string, or
tape. Load in the input tape tapel.tap from the Ihomel
smaug/mcfallhab directory. Draw a picture of what the
input tape now looks lilm

Before we start, we must tell the machine whereto start
reading the input tape. The machine reads from right to let%
so drag the arrow indicating the current position to the
furthest non-empty square to the right and release it.

Now hy the tape tape2.tap. Also, go up to the options menu
and select Run Options. From the pop-up window that
WPWUS,chwse Key Press for the pause type and select
apply. This causesthe progmrn to wait for a key pressbefore
each character is read from the input tape. Run the machine
this way and again describe the results:

Now it is your hun to try and create some machines. Select
the reset machine button on the left side of the screen. You
can use Udsbutton any time you decide you don’t like what
you have and want to start over. Constructing a machine is
fairly simple. The buttons along the left side of the screen
control the current “action” you are performing. Note that no
matter what you do, the fmt state that you construct will be
a start state. If you wish to make the start statea final stateas
well, you must select the final state button before you place
the start state.

For practice, we will construct the a“b” machine that we
loaded in earlier. Since our start state was a final state, we
need to select the final state button. Now move the mouse
into the drawing areaand press the left mouse button where
you want the state to appear. If the state you’ve drawn
doesn’t look the way it should, you might have moved the
mouse too fast while selecting the final state button. If so.
reset the machine and try again.

We need one other state, which is also a finai state. You
don’t have to select the final statebutton again -- the “action”
stays the sameuntil you pressanother button. Place this state
on the diagram in the sameway as the fmt state.

To construct the transitions, fmt select the transition button.
We want our fmt transition to be from stateOto itsetf. Move
the cursor inside state O and click the left mouse button
twice. A window will pop up asking you to type in the
character on which the transition occurs. Move the cursor
inside this window and enter an ‘a’, then select the Done
button. In the sameway, add a transition from stateOto smte
1on a ‘b’ and one from state 1 to itself on a ‘b’. The machine
is now complete.

If you wish to modify the diagram you can do so by fmt
selecting the state button. Then pointing the mouse inside
the state you would like to move, holding down the left
mouse button and moving the mouse until the state is where
you want it. Then release the mouse button. You can also
change the curvature of a transition this way by dragging the
label of the transition.

Now, try to construct machines that accept the following
strings:

-a+b* -- ab”a -- anbn

Draw pictures of the machinesyou designed for the first two
If you ve had trouble with the last one, thete is a good reason
for it, This string cannot be recognized by any ftite state
automaton. The reason is that you have no way of making
sum that the same number of b’s occur asa’s.

128

Load in the machine an bn.mac and the tape tape3.tap. Set it does it?
the machine options d61ay ~ to Key Press and run the
machine.

This type of machine is called a push-down automaton
Keep an eye on the right side of the scnxn as the machine because of the presence of a push-down stack. If :you
runs, and seeif you can expti what is happening. Try some continue on in Computer Science, you will encounter the
other strings and seewhat happens with those. You will see stack data structure again many times.
that this machine acceptsexactly anbn.Can you explain how

VJ TUMS
.

File . . . v
~

.

machine Type V Selact Alphabet v
-

m
Sub-Machine

CQ

m
Transition

El
teset Machine

m—_-_—
KunMuhhm

Sc?all . .

ml m..

Figure 1: ms initial screen

129

GEE)

Figu”re 2: The Trans It Ion Window

. TUAIS

File.. v
~

Machine TYD8 v Selact Alohanet. v QED

ml
Smb-WuNm

g

m
Find stun

g

m
Trms*i9” t===

I SCMII . . .

Im m
● b

*

t

Figure 3: Simple Machine and Input Tape

