Finite State Machine Simulation in an Introductory Lab

Ryan McFall

Department of Computer Science
Michigan State University

East Lansing, M1
mcfallry@cps.msu.edu

Introduction

TUMS (TUring Machine Simulator) is a program that
we have developed to make the process of leaming about
finite state automata and Turing machines easier for the
undergraduate student. It is our belief that allowing students
to visualize the actions of such a machine will greatly
enhance their understanding of how it works. TUMS
provides a graphical interface that allows the student to
construct and execute these machines. The software runs
under the OpenWindows platform on a Sun SPARCstation.
The motivation for the project arose from the use of a

ackage called Turing's World (1986) which runs on the
intosh platform. The intent of TUMS is to provide the
functionality of Turing's World on SPARC architecture, as
well as to provide some features not present in Turing's
World.

Another Macintosh based program called Hypercard
Automata Simulation has been developed at Union College
by Hannay (1992).

This paper describes the TUMS software as well as its
use in various courses in the Hope College Computer
Science curriculum.

The Software

When TUMS is started the screen appears as in figure
1. Along the left side of the screen are the buttons that control
the construction of a machine. The large window to the right
of these control buttons is the "canvas" where the machine is
built. Along the bottom part of the screen is the area where
the input tape(s) is(are) displayed. Finally, the panel on the
extreme right of the window simulates the action of a push
down stack for those machines where one is present.

The first step in constructing any machine is to place
the start state on the canvas. Since every machine requires a
start state, TUMS will not allow anything else to be specified
until the start state has been placed. Of course, it is possible
that the start state might also be one of the final states; this
can be accomplished by selecting the final state button
before positioning the start state on the canvas. Positioning
the state on the canvas is achieved by moving the cursor
(which takes the shape of the object that is about to be
placed) to the desired location and clicking the left mouse
button once.

Once the start state has been placed, the user is free to
continue building the machine in any order he or she wishes.
The buttons on the left always control the "current action.”
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
end/or specific permission.

SIGSCE 94- 3/94, Phoenix, Arizona,USA

© 1994 ACM 0-89791-646-8/94/0003..$3.50

126

Herbert L. Dershem

Department of Computer Science
United States Air Force Academy
USAF Academy, CO
hdershem@cs.usafa.af.mil

For example, to place a final state, the user first selects the
final state button and then places the state on the canvas.

Defining the transitions between the states is equally
intuitive. First, the user selects the transition button. Clicking
with the cursor inside of a state designates that state as the
source state; a second click in any state chooses the
destination state. After the destination state has been
selected, a window like that in figure 2 appears. Depending
on the type of machine being constructed, different fields in
the panel will be active to allow the user to specify which
action(s) should be taken for this transition,

After the machine has been completely defined, the
next step is to specify the input string to be used. This is done
by moving the pointer to the input tape in the bottom area of
the screen. A character is put on the tape by clicking the left
mouse button repeatedly until the desired character appears.
The program will cycle through all available characters in
the alphabet as the button is pressed. Note that it is possible
to select any set of symbols for the machine's alphabet by
pulling down the Select Alphabet menu and then selecting
Choose Alphabet from the menu. TUMS defaults to having
an alphabet of 'a’, 'b’, and ™',

After the input has been specified, the user must select
the starting position on the tape. TUMS reads from the input
tape in a right to left manner. To designate the starting
character, you use the mouse to position the arrow
underneath the input tape below the desired start symbol.

Figure 3 depicts a simple machine with an input string
specified, ready to run. First we will describe how a
deterministic finite state automaton executes in TUMS.
When the Run Machine button is selected, the machine
begins its execution. The state that the machine is in at any
given time is represented as a filled circle, while the input
tape’s arrow always points to the next character to be read.
As the machine runs, the user is able to follow the path of
execution by watching the highlighted state and the arrow.

There are two options available when running a
machine. The first option determines how long the program
waits before reading the next symbol from the input tape.
The default value is approximately one second. By pulling
down the Options menu and then selecting Run Options, you
can either change the time interval (from a minimum of zero
seconds to a maximum of two seconds), or specify that
TUMS should wait for a key to be pressed before reading the
next character.

The second option determines the way sub-machine
execution is visualized. The default action is to have the
current machine cleared and the sub-machine drawn on the
canvas while it is executing. During this execution, the sub-
machine behaves exactly as if it were a stand-alone machine.
However, with an appropriate menu selection, sub-machines
execute invisibly and instantaneously. That is, the "main", or
"calling” machine stays on the screen and the sub-machine
executes in the background, with no delays between
consecutive main machine reads of the input tape.

When the machine completes execution, a window
appears with information regarding whether or not the input
string was accepted. If not, it contains a brief description of
what caused the string to be rejected.

Non-deterministic = machines operate slightly
differently. Rather than forcing the computer to make a
choice of which path to take when more than one possibility
is present, a parse tree is constructed displaying all possible
paths. At this time, TUMS only displays those paths that lead
to the input string being accepted. In the next revision, all
accepting paths will be displayed in black, non-accepting in
gray.

TUMS can also run machines other than DFA’s or
NDFA'’s. Push Down Automata can be implemented, as well
as one or two tape Turing Machines. We omit a discussion of
these other machines for space considerations. The basic
steps, however, are identical to those used in building a finite
state automaton. In all cases, the user has the ability to save
both machines and tapes to disk. The ability to print a copy
of the state transition diagram is planned, but currently not
implemented.

The Laboratory Exercise

During the fall semester of 1992 a new component was
introduced in the introductory computer science class at
Hope College. This is a two-hour weekly lab section,
designed to give an introduction to some topics in computer
science that are generally not presented to an introductory
level computer science student. Topics covered included
software testing and evaluation, modeling and simulation,
cellular automata, and finite state automata. The last topic is
where TUMS fits in.

Finite-state automata are difficult to understand,
especially for students with little computer science
background. The ability to visualize these machines and
watch them perform through animation places the
corresponding concepts within the grasp of the beginning
student.

The laboratory was designed to give the students an
introduction to the principles behind finite state automata,
and then allow the students to explore these concepts in more
detail on their own. An abbreviated copy of the laboratory is
included as an Appendix to this article.

Upon starting the program, the students were asked to
load some simple machines that we had previously
constructed and experiment with them. Once they had
determined what language each of them accepted, we then
asked them to construct and test a couple of machines on
their own.

The final exercise asked them to design an FSA that
accepts input of the form a"b". Of course, this is a classic
exercise designed to demonstrate the limitations of finite
state machines. After the students had tried various methods
of doing so, we explained to them why such a machine was
impossible, and demonstrated using TUMS a simple push-
down automaton that could accomplish the task.

Evaluation

Students had fun working with the program and gained a
genuine understanding of the concepts. Several of the
students stayed after the regular class period to experiment
with the software. The ability to test and redesign their
machines gave them a sense of accomplishment when they
had completed the lab.

In addition, some benefits were realized that we had not
intended. One of these benefits deserves particular mention.
Since TUMS was conceived and written entirely by
undergraduates, the students in the introductory class got a
chance to see the type of "fun” projects that can be attempted
as their problem solving and programming abilities progress.
This is important because students often believe that the only
thing computers can do is solve the problems typically
presented to introductory students. It is important to convey
that computers can be used as educational tools.

The students enjoyed working interactively with the
computer. After designing a machine, the students used
TUMS to obtain feedback about whether or not they had
achieved the designated purpose. The visual nature of the
program facilitated group work and interaction. Each
member of a group could see what was happening on the
screen and figure out why the machine had or had not
accomplished its intended purpose. At one time or another
each of the students found themselves in the role of teacher,
explaining to the other members of the group what had gone
wrong. They appeared to feel comfortable using the software
to demonstrate their ideas to the other group members.

Because of the lack of any further evaluation, it cannot
be determined if the students fully retained the concepts that
were intended. However, complete retention was not our
goal. Rather, we hoped that using TUMS would allow the
students to explore the ideas we were presenting and aid
them in acquiring a fundamental understanding of those
ideas. Based on the success the students experienced in
completing the lab exercises, it appears this goal was
successfully accomplished

The majority of difficulties we had with the lab came
from the students’ unfamiliarity with the OpenWindows
environment. However, this did not prove to be a major
hindrance to the learning process; once they got accustomed
to using the mouse, they were able to operate the software
with little difficulty.

The students did manage to uncover several bugs in the
program. These bugs were generally caused by events that
were unforeseen, such as the user repeatedly pressing the
mouse button because they thought the program was not
working. Occasionally the effects were severe enough that
we would have to kill the process and have the students start
over. By the second semester of use, most of these bugs had
been ironed out.

Future Directions

There are many improvements and refinements to
TUMS that are in our future plans. The most important of
these include improving the software’s ability to handle sub-
machines and non-deterministic machines and improving the
software’s robustness.

The laboratory will continue to be taught in future
semesters. For the most part, we were happy with the content
of the lab and the reception it received from the students. The
only change that may be necessary is to give the students an
introduction to Unix and OpenWindows before the lab so
that they can focus more of their attention on finite state
automata.

It is also planned that the software itself will eventually
become a major component of the Theoretical Computer
Science class here at Hope College. This will take place as
soon as sub-machines and non-deterministic machines are
fully implemented. We would also like to add the capability
of printing the state-transition diagram for a machine.

127

Acknowledgments

We would like to thank Hope College students Don
Lingle, Jason Bomers, and Brett Folkert and faculty
members Gordon Stegink and Mike Jipping for their
contributions to this project. This work was partially
supported by the Research Experiences for Undergraduates
Program of the National Science Foundation, grant number
CDA-9200118.

References

Barwise, J. and J. Etchemendy, "Turing’s World: A
Computer-Based Introduction to Computability Theory.”
Kinko’s Academic Courseware Exchange, Santa Barbara,
CA 1986.

Hannay, D., "Hypercard Automata Simulation: Finite-State,
Pushdown and Turing Machines," SIGCSE Bulletin
24(2),55(1992).

APPENDIX
The Laboratory
I1. The Finite State Automata Program

At this stage, hopefully you’re comfortable enough
with the OpenWindows environment to use a program
written for it. Change to the directory /home/smaug/mefall
and double click on the icon theory.

First, we will load a couple of sample machines to see
how the program works.

-- move to file menu and press left mouse button
-- when a window pops up with a list of file

select (left button again) the one named
a_star_b_star.mac and select it

Each circle on the screen represents a state of the
machine, and the arcs between them represent the
transitions. Above each transition is the character on which
that transition will be applied. The start state has a ">" in
front of its circle, while a final state is composed of two
circles. Note that a start state can also be a final state (as it is
in this case).

Every machine can have its own "alphabet" of
characters that it understands. By default, these machines

have an alphabet that consists of the characters ’a’, ’b’, and
Q*i

To run a machine, you must specify an input string, or
tape. Load in the input tape tapel.tap from the /home/
smaug/mcfall/lab directory. Draw a picture of what the
input tape now looks like:

Before we start, we must tell the machine where to start
reading the input tape. The machine reads from right to left,
so drag the arrow indicating the current position to the
furthest non-empty square to the right and release it.

Now we are ready to run the machine. Find the Run
Machine button on the left side of the screen and select it.
Describe what happens:

Now try the tape tape2.tap. Also, go up to the options menu
and select Run Options. From the pop-up window that
appears, choose Key Press for the pause type and select
apply. This causes the program to wait for a key press before
each character is read from the input tape. Run the machine
this way and again describe the results:

Now it is your turn to try and create some machines. Select
the reset machine button on the left side of the screen. You
can use this button any time you decide you don’t like what
you have and want to start over. Constructing a machine is
fairly simple. The buttons along the left side of the screen
control the current "action” you are performing. Note that no
matter what you do, the first state that you construct will be
a start state. If you wish to make the start state a final state as
well, you must select the final state button before you place
the start state.

For practice, we will construct the a'’b’ machine that we
loaded in earlier. Since our start state was a final state, we
need to select the final state button. Now move the mouse
into the drawing area and press the left mouse button where
you want the state to appear. If the state you've drawn
doesn’t look the way it should, you might have moved the
mouse too fast while selecting the final state button. If so.
reset the machine and try again.

We need one other state, which is also a final state. You
don’t have to select the final state button again -- the "action”
stays the same until you press another button. Place this state
on the diagram in the same way as the first state.

To construct the transitions, first select the transition button.
We want our first transition to be from state O to itself. Move
the cursor inside state O and click the left mouse button
twice. A window will pop up asking you to type in the
character on which the transition occurs. Move the cursor
inside this window and enter an ’a’, then select the Done
button. In the same way, add a transition from state 0 to state
1ona’b’ and one from state 1 to itself on a 'b’. The machine
is now complete.

If you wish to modify the diagram you can do so by first
selecting the state button. Then pointing the mouse inside
the state you would like to move, holding down the left
mouse button and moving the mouse until the state is where
you want it. Then release the mouse button. You can also
change the curvature of a transition this way by dragging the
label of the transition.

Now, try to construct machines that accept the following
strings:
—-a'b

3 —ab'a -- a"p"
Draw Pict\mes of the machines you designed for the first two:
If you’ve had trouble with the last one, there is a good reason
for it. This string cannot be recognized by any finite state
automaton. The reason is that you have no way of making
sure that the same number of b’s occur as a’s.

128

Load in the machine an_bn.mac and the tape tape3.tap. Set it does it?
the machine options delay type to Key Press and run the
machine,

This type of machine is called a push-down automaton
Keep an eye on the right side of the screen as the machine because of the presence of a push-down stack. If you
runs, and see if you can explain what is happening. Try some continue on in Computer Science, you will encounter the
other strings and see what happens with those. You will see stack data structure again many times.
that this machine accepts exactly a"b". Can you explain how

TUMS

la

(G v) (Ontions ... @) (Machine Type . v) (Selact Alphabet . ©) (About.)

d

Sub-Machine

1

g

Final St:

L

i

)

-
)
3
n
=
]
3

Stack Contrais

Scrodl ...

- 0

Reset Machine

o

Run Machine

Figure 1: TUMS initial screen

129

e Transition Chooser R

Transition Character 3

Character te fop _

Character ta push

Vrite on Tape 12 Move o Tape 2:
YWreite on Tape 20 Move on Tape 2:

L J
Figure 2: The Transition Window

2] TUMS
-

Flie . . v) (Options. .. v) (Machine Type .. @) (SelectAlohaget ... v) (Rbout..)

@

Sub-machine

{8

Final State

Transition Stack Contrels

scroll ...

Reset Machine

Rua Maching

Figure 3: Simple Machine and Input Tape

130

