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1. INTRODUCTION

One of the major advantages in using a computer for
problem solving is that a process can be explained to the
computer once and the computer can repeat that process
as many times as is necessary to solve the problem. In
fact, without this computers would be of limited use
as problem solving machines because it generally takes
longer to explain a process to the computer than to
carry it out by hand. Repeated execution of a single
set of instructions on a computer is often called
iteration. The term "iteration' also refers to any single
execution of a process that is carried out more than once;
the sense in which the term is used should be clear from
the context.

The module describes ways in which you can use com-
puter iteration effectively in problem solving and, in
addition, ways in which you can use two other forms of
iteration in constructing the algorithm. The second form
of iteration involves repeated tracing through of the
problem solving steps, improving your algorithm with each
iteration. We call this process iterative improvement in
algorithm design. Each improvement of the algorithm might
add features to the previous version.

The third form of iteration in problem solving is
found in an approach to algorithm design called the
top-down approach. This approach for carring out step 4
of the problem solving process (see Unit 477) might best
be called iterative refinement. It differs from iterative
improvement in that the algorithm is not changed at each
iteration, but rather, more detail is provided.

2. A MORTGAGE PROBLEM

In order to illustrate the iteration technique, we
shall solve the following problem: given an amount of

S



borrowed principal, a yearly interest rate, and a month-
1y payment, determine the new principal after one month-
ly payment has been made and determine the interest for
one month.

The input for this algorithm consists of the
principal at the beginning of the month, the yearly
interest rate expressed as a decimal, and the amount of
the payment. The output will consist of all values input
plus the part of the payment which will be used to pay
interest, the part of the payment which will be used to
pay off the principal, and the new principal balance at
the end of the month.

Algorithm 1. Mortgage payment - Version 1.
Variables

Name Description

prin The principal balance at the
beginning of the month.

rate The yearly rate of interest
expressed as a decimal.

pay The amount of the payment.

interest - The part of the payment which
goes toward interest.

prinpay The part of the payment which
goes toward the principal.

new The new principal balance at the
end of the month.




START
E%&n, rate, pay

A

interest+prin x rate/12

prinpay<pay-interest

s

new«<prin-prinpay

prin, rate, pay
interest, prinpay
new

The interest is calculated by multiplying the prin-
ciple, prin, times the interest rate divided by 12 be-
cause the given rate is for a year and the period used
is a month. The value of prinpay is the amount left
from the payment pay after the interest is paid. Finally,
new is the principal balance after prinpay is paid.

Exercises:

1. Choose sample values for prin, rate, and pay, and follow
through algorithm 4 as a computer would.




Name

stbal

finbal

chktot.
deptot

2. Follow the steps in the flowchart language algorithm below
for some sample input values. The algorithm is one to balance
a checkbook. gor

Algorithm: Balancing a checkbook

Variables
Description.

Balance at the beginning of the month.
Total amount of all checks written,
Total amount of all deposits made during
e onkh. | |
Balance at the end of the month.

('s'tb'a-l ;chktot,deptot

=

finbal«stbal-chktot+deptot

Lol
stbal,chktot,
deptot, finbal,




3. ITERATIVE TMPROVEMENT

Although our mortgage payment algorithm 1 will
function properly if friendly values are input, it will
not respond in a suitable way to bad input. For example,
consider the case in which the payment is too small to
cover the interest for the month. Suppose prin = 20000.,
rate = .09, and pay = 100. If you follow through the

steps of the algorithm with these values as input you get

interest = 150.
prinpay = -50.
new = 20050.

On the other hand, the payment may also be too large.
In this case, the payment covers the interest and the
remaining principal and there is still some extra left.
This is typical of the final payment in a pay-back
schedule. For example, suppose prin = 60., rate = .09,
and pay = 100. Then, the calculations would be

interest = 0.45.
prinpay = 99.55.
new = -39,55.

We shall use iterative improvement to correct these
two minor flaws in our original algorithm. If the pay-
ment is too small, we inform the user and terminate the
program; if it is too large, we pay off the loan and
notify the user that he or she is entitled to a refund.

These modifications to Algorithm 1 are indicated in
Algorithm 2. The decision box included immediately after
the input box tests for a payment too small to cover the
interest. When this is the case, we provide a message to
the user and then immediately halt the algorithm. This
action represents a policy of disallowing payments which

are inadequate to pay the interest.
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After the interest payment is calculated, we add

another decision box which tests for payment greater than

the principal. In this case, we calculate the new prin-
cipal and amount paid on principal in a different way and
adjust prinpay to exactly pay the remaining principal.

We also include a message which notifies the user that

he or she will receive a refund.

Algorithmﬂz. Mortgage payment - Version 2.

Name Description

prin The principal balance at the
beginning of the month.

rate The yearly rate of interest
expressed as a decimal.

pay The amount of the payment.

interest - The part of the payment which
goes toward interest.

prinpay The part of the payment which
goes toward the principal.

new The new principal balance at the
end of the month.

overpay The amount of overpayment for the

final payment.
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interest+prin x rate/12

ay>interest+prin?

yes

new<0

prinpay<prin

overpay<pay-prinpay
-interest

pay+<pay-overpay

yes
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prinpay<pay-interest
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new+<prin-primpay

prin,rate,pay,interest
prinpay,new




Exercises:

5. Follow through Algorithm 2 for the following input data:

Prin rate pay
Test 1 20000. 212 250.
Test 2 20000. .12 150.
Test 3 200. .12 400.

4, ITERATION

The next step in the improvement of our mortgage
algorithm will be to generate a schedule of payments by
repeatedly executing the algorithm given above. To
assist us in doing this, we use the three forms of itera-
tion that were introduced in Section 1.

We shall discuss two forms of iteration here, and
a third form in the next section. The first form will be
called the until <iteration. The iteration box which we
use to describe this construction is indicated in the
following diagram.
r—-‘--’--'. ----------------- -
- _ s

ermination Test
Satisfied?

Until
iteration

The body of the iteration is actually a subalgorithm
which is to be repeated until the termination test is
satisfied. The body of the iteration is shown as a cloud
to indicate that this might be one or two boxes or a more
involved set of flowchart statements. In the latter case,
we will find it helpful to give the body a flowchart of
its own and include only its name to the right of the
iteration box. The procedure for doing that will be
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discussed later. The dashed line from the body back to
the termination test indicates that this is an automatic
branch in the algorithm and not one that needs to be
explicitly defined. We can consider the dashed line to
be a part of the iteration box.

The second form of the iteration box is the while
tteration. This form accomplishes exactly the same action
as the until iteration but does it in a logically opposite
way. Its general form is shown in the next diagram.

J v
Continuation

Test
Satisfied?

While
Iteration

The test is now called a continuation test because
the iteration is continued as long as the test is
satisfied. The continuation test is always logically
opposite to the termination test; the two forms are
introduced because some computer languages naturally per-
form the until iterations while others are designed for

while iterations.

As an example of the use of the iterations, consider
the algorithm for finding the greatest common divisor.
We have two ways of expressing this algorithm using the
iteration boxes just introduced.

Algorithm 9. Given two numbers, N and M, find their
greatest common divisor using an iteration statement.

Variables

Name Description

N,M The two numbers input to the
algorithm.

K A counter which is tested for the

greatest common divisor.

=G



a. Using until iteration

b. Using while iteration

START

N,M

K+min (N,M)

Does K not
divide N or not
divide M?




S s Y ——

Algorithms 3a and 3b are logically equivalent in
that they accomplish the same task. Note that the
condition in the iteration box of Algorithm 3b is the
logical negation of the one in the iteration box of
Algorithm 3a. That is, you terminate precisely when you
do not continue.

We now use these iteration boxes to make a final
iterative improvement to our mortgage algorithm. We
shall now have the algorithm continue to make monthly
payments until the mortgage is paid off. This algorithm
is given in our flowchart language in Algorithm 4.

Algorithm 4. Generate the monthly payments necessary to

pay off a mortgage with initial principal prin, yearly
interest rate rate, and monthly payment pay.
Variables
Name [

prin Principal amount.
rate Yearly rate of interest ex-
pressed as a decimal.

pay Amount of the monthly payment.
interest Part of the monthly payment
which goes toward interest.
Part of the monthly payment
which goes toward principal.
New principal after a payment
has been made.

prinpay

newprin




START

[grin,rate,pay
v

interest«prin x rate/12

yes

"payment does not
cover interest!'

prinpay<pay-interest
_______________________ -
i
i i i |
newprin<prin-prinpay |
I
_L 1
|
I
_ |prin,rate,pay,interest, :
newprin<0 prlnpay,newprlnlf__________ |
prinpay<prin L_ :
pay+interest+prin i
e prin<newprin :
interest+prin x rate/12 1
prinpay<pay-interest I
prin,rate,pay =x :
interest,prinpay e e g

newprin ’///’,___.
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Much of this algorithm looks familiar from
Algorithm 2. After the results for one month are printed
in an iteration, that month's. new principal is then set
to be the next month's beginning principal. The itera-
tion finally terminates when the amount paid on the
principal exceeds the principal balance. Unlike
Algorithm 2, we now call this a valid payment and make
it the right amount to pay off the debt exactly.

———

5. VARIABLE-CONTROLLED ITERATION

In the last section we learned about forms of
iteration which repeated a subalgorithm until termina- “
tion conditions were met or continuation conditions were . l
not. Now we introduce a slightly different form of {
iteration. This is iteration controlled by a variable, '
The general form of such an iteration is

i PSRy S S

Initialize Modify
control control
variable variable

e

Test control variable Body
for a termination ailure -
condition

Success

It should be noted that this form of iteration is a
special case of the form we studied in the preceding
section. This iteration can be stated in terms of the
previous one as indicated in the following diagram.




Initialize
control
Variable :
pogmR Modify controlge-—--q
- J’ e variable

Test control
variable for termination
condition

failure‘-

The reason we give the variable-controlled iteration
its own form is that it is commonly used and is directly
implemented in most programming languages.

The variable which controls the iteration is set to
some initial value at the beginning of the iteration. It
is then modified after each execution of the body and the
iteration is terminated when the control variable satis-
fies some termination condition. In order to control the
iteration properly, the control variable should not be
changed in the body. This form of iteration is particu-
larly useful when a process must be repeated a fixed
number of times. In this case the control variable is
used as a counter which in some way keeps track of the
number of times the body has been executed.

Algorithm 5 provides an example of variable-controlled
iteration. In this case, the variable count is used to
count the number of data values which have been read in.

It is initialized to 2 to indicate that the second

value is read during the execution of the body. It is
incremented by 1 each time, and when the increment makes
count larger than N, then N values have been read, so

the iteration is terminated.




big«first

1
[

count+2| count< {
count +1 :

CountsN? 00 Test-nex

yves

big

big+next

Another new box has been introduced in this algorithm.
This is the triangular shaped procedure box.

inside such a box is the name of a procedure w
executed at that point.

The name
hich is to be

This type of box is used to avoid
complicated constructions in the body of an iteration.

The flowchart for the procedure is then found elsewhere.
A procedure is actually a subalgorithm.
and ending with START and STOP boxes
are ENTER and EXIT.

Instead of beginning
, its termination boxes
The ENTER box of a procedure has a
pennant attached to it which gives the name by which it is
called into action. When we arrive at the EXIT box of the
procedure, we automatically cease execution of the procedure

-15-



and begin execution in the algorithm which called the
procedure at the next sequential box after the procedure

box.

We will use such a procedure box as the body of a
loop when the body is longer than one or two boxes.

We now consider another example. Suppose there are
30 students in a class and each student has a student
number and 10 quiz scores. The algorithm is to determine
the sum of the quiz scores for each student. The
algorithm for solving this problem is presented as
Algorithm 6.

Here we have an iteration within an iteration. This
is a construction that occurs frequently in algorithms.
Also note, in the Find-sum procedure, that sum needs to
be initialized to zero before a sum is accumulated. If
this is not done, a cumulative sum of all students' scores
will be computed. In fact, there is no guarantee that
sum is zero at the very beginning of execution.

Algorithm 6. Find the sum of 10 quiz scores for each of
30 students.

Variables

Name Description

stent The counter for students which goes
from 1 to 30.

stnumber The student number read for each
student. '

sum The sum of each student's quiz
scores.

qcnt The counter for quizzes which goes
from 1 “tot 10

gscore The quiz score read for each quiz

and student.




[_stcﬁt*l

Stent+
stent+1l

Stnumber

- - - -

qcnt+
qcnt+1

gcnt+l

qent>10?

stnumber, sum

_stcnt>307?

sumesum+qscore

1
I
1
1}
=l




Exercises.

4. Modify algorithm 6 to input the number of students and the

number of quiz scores for each student.

5. The following boxes are used in a flowchart language algorithm

for finding the two largest numbers in a set of N numbers.

Place the boxes in the proper arrangement.

Name

Value
bigl
big2

START

STOP

&

143 T«1+1

I=N?

yes

Variables

Description

The number of values in the set.

The value read.

The biggest value read so far.

The next-to-biggest value read so far.

A counter used to count the number of

values read.

N

bigl,big2

IValue

bigl,big2

big2>bigl?

Value>big2?

Value>bigl?

-

big2«Value

v
e

big2«bigl
bigl«Value

v
&

Temp«bigl
bigl«big2
big2«+Temp

v




6. The following boxes can be used to construct an algorithm for
computing the mean of a set of N numbers. Arrange them in the
proper order. '

Variables . _

| EEEE’ ‘Description
. N ‘The number of values in the set, {
' Value The value read. F
Mean The mean of the values. ;
i I A counter used to count the number of values .
Tead. ||
Sum The sum of the values read, ”

‘no

ol
E9m+Sum+value

=
mean Sum/N

v

75 Arrange the following boxes to form an algorithm which finds all
integers between M and N which are exactly divisible by K.

Variables
Name Description
M The lower limit of the range of integers.
N The upper limit of the range of integers.
K The value whole numbers are to be printed.
I

A counter used to test for answers which
goes from M to N.




START M,N,K | IM I+I+1

STOP ‘ . :

I divisible

no

yes

yes

6. TOP-DOWN APPROACH

The top-down approach for designing algorithms is a _
technique that allows the designer to handle a complicated
algorithm in a simple way. The basic approach is to
design the algorithm using powerful boxes, then breaking
those boxes down into flowcharts with less powerful boxes
and continuing that process until you are at a level suit-
able for implementation on a computer.

In order to illustrate this technique, we look at an
algorithm for arranging N numbers in natural order.

Algorithm 7. Read N numbers and print them in non-
descending order.

Variables
Name DescriEtion
N The number of values in the set.

A An array of N values to be ordered.



START

_ N
rN,A(l] v =l G

R

Put the numbers A(1),...,A(N)
in non-descending order

)

A1), ... ACN)

This is obviously not the final solution to our problem
since we still have not described the process in enough
detail for the computer to follow. The next step is to
break the middle box itself down into an algorithm.
This is the beginning of iterative refinement.

Algorithm 8. Put the numbers A(1),...,A(N) into non-
descending order.

Variables

Name Description

N The number of values in the set.

A An array of N values to be
ordered.
A counter which goes from N to 2.
The index of the largest value
from A(1) to A(k).




g - .
Find the largest of
e el ] et AR el R Ansll
it A(max)
k<27? - I
yes
STOP

This procedure, for k=N down to k=2, 15 t6 find the
largest of the first k values and place it at the kth
position. The first time, with k=N, we find the largest
in the entire set and put it at the bottom. The next pass
through the iteration, with k=N-1, we ignore A(N) since

it is already correct, and place the largest of the first
N-1 values in the (N-1)st position. We continue the
process until all are in order.

Next we break down the box "find the largest...'" into
a flowchart. .

Algorithm 9. Find the largest of ALY e sl rgailil
it A(max) .

Variables
Name Description
A An array of values.
k The number of values in the set.
max The index of the largest value from
A(1) to A(k).
large The value of A(max).

A counter which goes from 2 to k.




max<1
large+<A(max)

Finally, we expand the "Exchange..." box from Algorithm 9.
This requires three data movements and one temporary
location. It is given by the following algorithm.
-Algorithm‘lﬂa Exchange A(max) and A(k).
Variables

Name Description

A An array of values.

K,max The indexes of the two values to

be exchanged.

START -

.temp+A(k}
A(k) <A (max)
A(max)«temp

We now have, in Algorithms 7-10, all of the steps
necessary to complete the task of placing the numbers in
order. We combine these into one flowchart for Algorithm
11,

-23-




Algorithm 11. Complete Algorithm to read N numbers and

print them in non-descending order.

e
N,A(1),...,A(N)

Order

ENTER

F———m———

k<N k<k-1

no

?

A1), ..., A(N)

o=

k<2?

yes

EXIT

Find-exchange-largg

ENTER

max«+1
large«A(max)

no

yes

temp?A(k)
A(k)«<A(max)
A(max)+temp

1
l

'est-large

Test-large

o

ind-
xchange -
arge

e |

1

I
|
-

} large«A(]j)
max<j




Algorithm 11 was designed by the top-down approach.
This means that we start with the highest level tasks and
proceed to break them down into more and more detailed
subtasks until finally we have an algorithm which is
detailed enough to provide complete instructions to
computers. In this way we have broken the original
problem down into three simpler problems.

In general, top-down design is an approach whereby
a difficult problem is broken down into several simpler
problems. Each of these simpler problems may also be
broken down into several simpler ones, and so on until
all of the problems to be solved are within the grasp of
the problem solver. This iterative refinement is a
very important strategy in computer problem solving,

Exercises:

8. Using the set of numbers 5,3,9,6,2,7 follow through Algorithm 11
as a computer would. :

7. SOLUTIONS TO EXERCISES

For Test 1, result is prin = 20000.
rate = .12
pay = 250.

interest = 200.
prinpay = 50.
new = 19950.

=25~
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4. Change first flowchart to:

nst,nqz

el :

stent+1

Change iteration box in Find-sum to

A" s
qent«l qent+
gent+l no
gent>nqz?

yes



._ 2 ﬂ: ? |

lg el Temp«bigl

: bigl«big2

big2+Temp

-
) _.__.__,_.....J

[
I>N? Value E
|
I
yes Value>bigl? :
bipg2«bigl ,
; =y bigl«Value X
bigl,big2 0 I
. |
|
Value>h — l

_ R
STOP e big2«Value | |
il
|
- ____’_.___J
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6.
N
T
Sum<0
r -------------------- — —
5
F*—l I+I‘+1l |
sN? o~ 1o (——“—— 'n
|
ves Value 1
.l’ I
1
_ '
mean<«Sum/N Sum«Sum+value L
T |
& 1 |
| { I
Mean i i

- — - —

T divisible
by K?

—-n—.-——-—.——.—.——...—-———

STOP

e




8. MODEL EXAM

The following algorithm reads a set of 50 numbers and prints the
smallest number in the set. Modify the algorithm so that it
prints not only the smallest number, but also the number of times

that number occurs in the set.

START

smal l<value

(551

Write an algorithm which reads an amount of money and determines
how many years it would take for that amount to grow to over
$1000 if it accumulates interest at the rate of 6% compounded

annually, Use each of the boxes below exactly once.

| )

START 8 amount<+amount x 1.06
| " !

4

es NeN+1 N+0

amount

3. Explain in your own words the top-down approach to algorithm

design. Discuss why it is important.

=20




small

9.

{count<1l

SOLUTTONS TO MODEL EXAM

count<count +1

ke
small<value
|count<1

| amount<amount x 1.06

L

| NeN+1

I‘- -

o




