
Java Class Visualization for Teaching Object-Oriented Concepts
Herbert L. Dershem and James Variderhyde

Department of Computer Science
Hope College

Holland, MI 49422-9000
dershem@cs.hope.edu

Abstract

Visualization is a useful tool in many areas of computer scil
ence education. This paper describes the use of visualization
in the introduction of object-oriented concepts. A Java appli-
cation has been developed that allpws the user’ to interact
with a visualiza.tion of any Java class through the instantia-
tion of objects, the movement of those objects around the
class environment, and the activation of class methods. The
user may also move conveniently between classes in this
visualization.

This Object Visualizer is useful for classroom demonstra-
tion, individual student use in the laboratory,. and class
debugging and testing.

1. Introduction

Students who are learning object-oriented programming fre-
quently have adiicult time understanding this new para-
digm and how it operates. As with any difficult subject,
students best learn this topic if a variety of learning modes
are used. In particular, visual learning can be effective and
the visualization of classes, objects, and methods can be an
important learning tool.

Previous work on the visual approach to learning object-ori-
ented concepts includes that of Kijlling and Rosenberg [l]
who have created’ a program development environment
including a language, debugger, and editor, that uses graph-
ics for the visualization of class inheritance relations and the
dynamic creations of objects. Another approach is that of
Haddad, Curtis, and Brage [2]. They have built a graphical
user interface for the visualization of object-oriented con-
cepts. Jerding and Stasko [3] have developed a tool for visu-
alizing the execution of C-t-+ programs with the intent of
enhancing program understanding.

Permission to make digitaLhrd copies of all or part of this matcrial for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title ofthe publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lii requires specific
permission and/or fee.
SIGSCE 98 Atlanta GA USA
Copyright 1998 Q-89791-994-7/98/2..S5.00

We will illustrate the features of the Object Visualizer
through the examination of a simple example fraction class
called Frac. The Java view of this class is found in Figure 1
and the view of this class produced by the Object Visualizer
is shown in Figure 2.

53 .

The testing of object-oriented programs is also a problem for
both teachers and students in beginning courses. Since teach-
ers focus on the design and implementation of encapsulated
classes, student construction of a test program is usually an
unwelcome diversion, introducing many details in its user
interface that distract the student from the issues of class
design and implementation. The actual evaluation of the test
can also be difficult due to the encapsulated nature of
classes. The use of a symbolic debugger is less than satisfac-
tory since it operates below the conceptual level of the class
structure. The relationship between visualization and debug-
ging and testing is well-known and has been explored by
Baecker, DiGiano, and Marcus [4]. The applications of visu-
alization to object-oriented debugging has been demon-
strated by Mukherjea and Stasko [5].

The need for a visual environment that will enhance student
understanding of object-oriented concepts and facilitate test-
ing and debugging is therefore desirable. Rosenberg and
Kiilling [6] have provided such facilities within their system.
Their work requires the development of the system within
the Blue environment whereas the present work permits the
visualization of any Java class.

This paper describes a tool that can be used by students to
visualize the interaction of class components and assist in
debugging student-written classes. This tool is a Java appli-
cation that accepts a Java class as input and produces a win-
dow that contains a visualization of the class’ methods.
Objects of this class may be instantiated and manipulated
within the environment. In particular, objects may be placed
as arguments for the invocation of methods, which may
result in the instantiation of further objects. This visualiza-
tion and manipulation of class components provides a useful
tool for learning object-oriented concepts.

The Object Visualizer

public synchronized class Frac extmds java.lang.Qjed
I

public int NLAG
public irk Den;
public Fracb.rLint~;
public FracO;
public void reduce0 ;
public static Frac add(Frac,Frac) i
public static Frac subtract (Frac,Frac) i
public static Frac multiply (Frac,Frac) ;
public static Frac divideErac.Fracl i
public java.larg.String toString i ’

t

Figure 1. Frac class methods defined in Java

Each class is represented by a unique color. These colors are
difficult to discern in the Figures found in this paper since
they are represented by shades of gray. Each method in the
class is represented by a button-box along the left edge of the
window. Eight methods including two constructors are
defined in the class Frac. The box contains the name of the
method and the color of the box is the color associated with
the return value of the method. For example, the two con-
structors and functions add, subtract, multiply, and
divide all return an object of class Frac and have their
function boxes colored with Frac's assigned color. Methods
that return void, such as reduce, are colored black. The
function tostring returns an object of String class and
is colored appropriately.

At the bottom ofi the left eclge are three boxes that are
included by the Object Visualizer in every class. The first

Figure 2. Object Visualizer view of Frac class

54

WL directory

http://www.cs.hope

:lass name

hC

two enable arrays of the class to be.instantiated and assigned
values. The third is a Waste box where objects are placed to
remove them from the environment.

To the right of each method box, ‘a prototype of .that --
method’s invocation is found. Within that prototype, con-
tainer boxes represent method arguments and, for each
object method, a container box of the defining class repre
sents the invoking instance. Once again, all boxes are color-
coded to the class or type that is represented. For example,
the top constructor has two arguments, both of int type, so
the boxes are of int’s color. All other boxes in the class
methods of Figure 2 are of class Frac.

The right frame of the window in Figure 2 contains initial-
izer buttons for the Java primitive data types and for the class
String. This frame remains the same for any class being
visualized. Each of these buttons permits the creation of an
object of the corresponding type when a value is typed into
the adjacent text field and the button is clicked.

The directory and class text fields at the bottom of the right
frame are used to specify the location of the class that is
being visualized. These can be changed at any time, and
pressing the “Read Class” button results in the loading of the
new class into the viewer.

Object Manipulation

We will now work through some manipulations of objects
within the class visualization shown in Figure 2. This will
illustrate some important features of the Object Visualizer.

y Em II
Figure 3. Instantiation of 5

In order to instantiate an object of class Frac, we must first
instantiate some &r&s. Figure 3 illustrates the instantiation
of the integer 5. The user first types 5 in the text field next to
the int button. A mouse click on that button then results in
the appearance of an object to the left of the button and
inside the left frame of the window. This object has the value
5 displayed within it and is colored with the color of inc.
Like all other objects, this object may be dragged via ‘the
mouse to any location within the left frame. In particular,
Figure 4 shows it located within the left argument container
of the Frac constructor. It also shows an int object con-
taining 7 in the right argument container and ‘the Frac
object “5/7” that appears when the Frac constructor button
on the left edge is clicked with the ints in ‘the argument
containers as shown. ‘,

55

FTXC

Figure 4. Instantiation of Frac 517

The “517” Frac object can now be dragged to any location
in the &me. Figure 5 shows the result of clicking function
add after the two Fkacs shown have been dragged to the
argument holders.

a
‘Figure 5. Activation of add function

Object methods such as reduce may modify the contents
of the invoking object. Figure 6 shows a before and after
view ‘of a reduce method invocation. I, ,

‘., J mlpgll.r*w 0;

Figure 6a. Before activation of reduce

Figure 6b. After activation of reduce

The text that appears in the object box is the result of the
tostring (1 method applied to the object. To view the
data components of an object, the user must meta-click the
mouse button on the’object as shown in Figure 7.

Figure 7. View of object components

Other Features of the object Visualker

The Object Visualizer window presents the‘view of one class
at a time. The class being ,viewed, may be changed at any
time, however, by specifying a new class at the bottom of the
right frame and clicking on the “Read Class” button. The

specified class will have its methods appear in place of the
methods of the original class. The objects that are in the win-
dow persist, however, until they are eliminated by placing
them in the “Waste” receptacle.

This feature permits the user to move easily from one class
to, another within the Visualizer. Objects can be created in
one class and then used in methods of another. It is particu-
larly easy to move from the currently viewed class to its par-
ent class by selecting “Move to Parent” from the “Class”
pull-down menu at the top of the window. The “History”
menu facilitates returning to a view of classes that were
viewed previously.

A class that has not appearid in the Visualizer during the
current execution is represented by the color black until it is
loaded into the Visualizer for the first time. At this time, a
color is assigned to that class and its future appearance in the
Visu&zer within other. classes .’ will inclyde that newly-
assigned color. Colors chosen to represent classes and @rimi-
tive types are arbitrarily chosen’ b) the system wilh two
exceptions. White is used for j ava . lang . Object class.
Arrays are represented by a lighter shade of their base class.

If method argument containers do not contain an object of
the correct type, or class at the time, the method is invoked by
a button click, an “Illegal Argument” window appears.

Larger classes can be conveniently viewed by using the hori-
zontal and vertical scroll bars in the viewing frame. This is
particularly helpful when viewing built-in Java classes such
as java.awt.Component as shown in Figure S.Implementation

-i
hplehentation

4
il , I.

An overvi- 0; the ir$lementation of thk Object Visualiza-
tion Applicatidn Aay be of interest. Thk graphical user inter-
face is actually quite simple. The application hears mouse-
down and mouse-drag events and responds with a change in
location of the “Aniniated Object” (the AnimOb j ec t inter-
face) and a repaint of the visible methods. The Animated
Objects are drawn as a colored rectangle with a helpful sum-
mary of the contents. If the class, has a tostring ()
method, it is used as this summary. Each primitive maker has
a default value that is created when the button is hit if the
input field is empty. Scrollbars are used with separate Scroll-
panes to view the class a little at a time. Below the class’
methods is a Waste method that is used to lose the reference
to an object. When this is activated, the draggable object dis-
appears and the i&an& itself will be garbage-collected.

Th& invocation of- the methods gnd constructors is a&oh-
plished through dse of the j ava . lang . Class cl&s and
the j atia . l&ng : ref Sect package. To get an instance of
the* Cl&i clasi y6u isimply call getciass () on the

56

object in question. You then use this Class object to get the
members of the class using ’ getDeclaredFields (1,
getDeclaredConstructors0, and getDe-
claredMethods (1. These each return an array of a class
from the java . lang . ref lect package. You call
newInstance () on a Constructor and invoke ()
on a Method. Each of these two methods takes an array of
Objects as a parameter to pass to the function being called.

Figure 8. Object Visualizer view of java.awt.Component

The Internet class loading is also quite simple. First the pro-
gram creates a URLConnect$on to a class file and down-
loads an array of bytes. This can then be turned into a class
using the def ineclass () method in the
java. lang . ClassLoader class. ,ClassLoader is an
abstract class, so it is extended to create an Internet-
ClassLoader class. Once a class is defined, it may then
used as much as needed. Unfortunately, only public methods
and constructors may be used.

Educational Visualization 1

The Object Visualizer is a valuable tool in courses where the
object-oriented paradigm and Java are taught. This software
is very ffexible and can be used in a wide variety of settings
and fulfill many roles.

Classroom discussion of the object-oriented paradigm and of
specific classes can benefit from demonstrations with the
Object Visualizer. For example, the Frac class in Figure 1
can be presented in class as both Java code and in visual
form. The visualization of class actions promotes better stu-
dent understanding and gives the instructor an opportunity to
point out key activities and relationships.

Visualizations can also provide useful laboratory activities
since students are able to manipulate objects within the class
and between classes. Since the Object Visualizer works with
any Java class, student-written classes can interact with
instructor-provided classes, resulting in interesting activities
that can be feasibly directed and completed within the time
constraints of a closed laboratory period:

The ‘Object Visualizer also provides an excellent environ-
ment for students to test and, debug classes that they ‘write.
This eliminates the necessity of creating elaborate test har-
nesses for every class and allows the student to test the inter-
action of classes, This use is particularly helpful in lower-
level courses that introduce the object-oriented paradigm
since it allows the students to concentrate on class design
and implementation rather thqn the language and user-inter-
face details that are need to construct a test program.

The ability of the Object Visualizer to accept any Java class
also makes it an interesting, tool for students in studying
external classes. In particular, all classes within the Java API
are viewable, a useful tool to help students understand the
role and function of these classes. As students learn about
the j ava . awt package, for example, they can visually cre-
ate components and place them within cor&ners, seeing the
results of the methods as they are invoked. 1

Finally, students find the Object Visualizer to be a useful tool
for exploring remote classes that can be downloaded from
the web but whose source code is not available. Many inter-
esting approaches can be explored by examining the struc-
ture of a class.

Availability /

The Object Visualization class and its Java’ source code are
available at http : / /www . cs . hope. edu/-alganim.

Acknowledgments

The authors would like to thank Peter Bmmmund, who con-
tributed many helpful ideas to this project. This work was
partially funded by the National Science Foundation, Grant
Number CDA-9423943-03.

References

[l] Kiilling, M. and Rosenberg, J. An Object-Oriented Pro-
gram Development Environment for the First Programming
Course. Proceedings of the Twenty-Seventh SIGCSE Techni-
cal Symjosium on Computer Science Education (SIGCSE
Bulletin), 28,l (Mar. 1996), 83-87.

[2] Haddad, H., Curtis, E., and Brage, J. Visual Illustration of
Object-Orientation: A Tool for Tea&ing Object-Oriented
Concepts. l%e Jou’mal of Comeuting in Small Colleges, 12,
2 (Nov. 1996), 83-93.

, s, ,’

[3] Jerding, D.F. and Stasko, J.T., Using Visualization to
Foster Object-Oriented Programming Understanding. Tech-
nical Report GIT-GVU-94-33, Graphics, Visualiz&on, and
Usability Center, Georgia Institute of Technology, Atlanta,
GA, July, 1994. /

[4] Baecker, R.;‘DiGiano, C., and Marcus, A. Software Visu-
alization for Debugging. Communications ,of the ACM 40,4
(Apr. 1997), 44-54.

[5] MuFerjea, S. and Stasko, J.T. Toward Visual Debug-
ging: Integrating Algorit@m Animation Capabilities within a
Source Level Debugger. ACM Trayactions on Computer-
Human Znterac@on, 1,3 (Sep. 1994), 215244.

[6] Rosenberg, J. and Kijlling, M. Testing Object-Oriented
Programs:, Making it Simple. Proceedings of the Twenty:
Eighth SIGCSE Technical Symposium on Computer Science
Education (SIGC@ Bulletin, 29,1 (Mar. 1997), 77-81.

i’-’

57

