Recursive
Programming
inBASIC

Herbert L. Dershem
Hope College, M/

R ecursion can be a valuable tool on microcomputers
using BASIC. For this reason, it should be in every pro-
grammer’s repertoire.

What is recursion? :
Anything is recursive if it is defined in terms of itself. In
programming, a recursive subroutine calls on itself.

Don’t confuse recursion with iteration, since both often
can solve the same problem, The distinction is clear: a proce-
dure is iterative if the same process is performed, begun and
completed repeatedly;a procedure is recursive if, in the mid-
dle of its execution, it calls upon itself. Therefore, a recur-
sive procedure begins another execution of itself before the
original execution is finished. Such a procedure has more
than one execution in progress at a given time, whereas an
iterative procedure never has more than one in progress.

Testing for recursion

Not every language implementation permits recursion. In
BASIC, recursion is only possible if it is permissible to call a
subroutine from itself and still retain the ability of the ori-
ginal execution to return to the proper point. To test your
BASIC for recursion capability use the following program: .

10 REM TEST FOR THE ABILITY OF THE BASIC TO
PERFORM RECURSION

20 . N=1

30 I=0

40 GOSUB 100

50 IF I<>2*N-1 THEN 170

60 PRINT “RECURSIVE”; N-1; “TIMES.”

70 N=N+l i

80 GOTO 30

100 I=I+1

110 IF I<N THEN 130

120 RETURN:

130 GOSUB 100

140 [F I>2*N-1 THEN 170

150 1=1+1

160 RETURN

170 PRINT “NOT RECURSIVE”; N-1;*TIMES.”

180 END

Every call of subroutine 100 increments 1 by one. The
Nth call results in the setting of I to N and a return with-

10 Diaital Decion 1111 Y 1980

out a recursive call. This return to each of the previou's_“ il
levels increments I by one. On the final return, I should e
equal 2*N-1, if the process was carried out correctly. Thus, - & |

i
‘Y

if this program runs for a given value of N, this version of ~fe—e=
BASIC allows N-1 recursive calls. Many versions of BASIC W
virtually set no limit on the number of such calls possible. £
If the BASIC is not recursive to the appropriate level for
some value of N, it usually responds with some type of
diagnostic message rather than arriving at statement 170.

Writing recursive subroutines

If you have found that your computer’s BASIC does allow
recursive subroutines, you are now faced with the problem
of writing them. Then follow this general outline of recur-
sive subroutine in BASIC:

1. If the first call, initialize the stack pointer.

2. If termination condition, compute result, decrement

stack pointer, return. . ;

Do computation.
Save necessary values in stack.
Increment stack pointer.
Recursively call this subroutine.
Restore saved values from the stack.
Do any remaining computation.
Decrement stack pointer,
Return.

CAD 0N O Rit)

-

When you recursively call a subroutine from itself, the
variables in the called execution destroy the variables of the
same name in the calling execution. To preserve the original
values of these variables, save in a dimensioned variable
(called a stack) those variables you need to recall later. Sup-
pose your subroutine has three variables — X, Y and Z —
that it wishes to save for recall, when it returns from a re-
cursive call. The format of the stacks for these variables,
which are introduced by three subscripted variables of the
same names, uses the following representation: =i I

X(1) X from execution 1 :
Y(1) Y from execution | S|
Z(1) Z from execution 1 ;
X(2) X from execution 2
Y(2) Y from execution 2
Z(2) Z from execution 2
etc.

To keep track of the position in the stack where the cur-
“ rent execution saves its values, use a pointer. Every recur-
sive call increments this pointer by one. Likewise, each re-
turn decrements the pointer by one.

The general recursive procedure just outlined shows only
one recursive call in the subroutine. In general, steps 3 to 8
may be repeated several times before returning to steps 9
and 10.

An example: calculating N!

Let’s take a recursive subroutine and follow these steps.
Let's use the classic example of factorial recursion. Un-
fortunately, it’s also a problem because recursion is not the
best way to obtain a solution; however, it is the most famil-
iar and simplest of all examples, so why break tradition?

The common definition of N factorial (N!) is iterative -

and given by: N! = N¥(N-1)*(N-2)* . .. *2*1 forN=1,
2, . . . (where 0! = 1). But there is also this recursive
definition of N factorial: N! = N*(N-1)! forN=1,2, ...
(where. 0! = 1). Notice that the factorial is defined in
terms of itself, but with one escape clause which occurs at
0!, The recursive form of a subroutine to compute N! is
exemplified by this sample calling program:

960 REM THIS SUBROUTINE COMPUTES N FAC-
TORIAL RECURSIVELY AND '

970 REM STORES THE RESULT IN F. THE FIRST
CALL IS TO 990. : ;

930 REM.SUBSEQUENT CALLS ARE TO 1000.

990 S=1

1000 IF N< >0 THEN 1040

1010 F=1

1020 S§=§-1

1030 RETURN

1040 N(S)=N

1050 S =S+

1060 N=N:1

1070 GOSUB 1000

1080 N=N@E)

1090 F=N*F

1100 S=§-1

1110 RETURN

10 REM SAMPLE CALLING PROGRAM FOR RE-
CURSIVE FACTORIALS

20 DIM N (100)

30 INPUTN

40 GOSUB990

50 PRINTF

60 GOTO 30

In this program, statement 990 corresponds to step 1 in
the general algorithm given earlier. Statements 1000-1030
correspond to step 2, in which the termination condition is
N = 0. No computations in this program correspond to step
3 of the general algorithm. The remaining steps correspond
to statements as follows:

S R el e S S e
Statement(s)

1040
. 21050 ziiss
© '1060-1070
1080

1090
SU110°

Of course, the iterative version of the factorial subrou-
tine is much simpler and executes much faster. This is an it-
erative version of a sample calling program: -

970 REM ITERATIVE SUBROUTINE TO COM-
PUTE N FACTORIAL

980 REM AND STORE IT IN F.

1000 F=1

1010 IF N<=1 THEN 1050

1020 FORI=2TON

1030 F=F*

1040 NEXTI

105|0 RETURN

10 REM CALLING PROGRAM
TO COMPUTE FACTORIALS
ITERATIVELY

20 INPUTN

30 GOSUB 1000

40 PRINTF

50 GOTO 20

Computing Fibonacci Series

Another example of recursion is calculating the Fibonacci
sequence of numbers. The Nth number in the Fibonacci se-
quence, F(N), is defined in terms of its two predecessors.

F(0)=0

F(1)=1

F(N) = F(N-1) + F(N-2) forN + 2, 3,. ..

The BASIC version of this algorithm and its calling program
are:

970 REM SUBROUTINE 990 CALCULATES THE
NTH FIBONACCI NUMBER

980 - REM RECURSIVELY

AND RETURNS IT IN F.

990 S=1 :

1000 IF N =0 THEN 1020
1010 IFNX> 1 THEN 1050
1020 F=N

1030 S=8:1

1040 RETURN

1050 - N(S)=N

1060 S=S+1

1070 N=N-1

1080 GOSUB 1000

1090 N=N(S)

1100 F(S)=F

1110 S=S+]

1120 N=N=2

1130 GOSUB 1000

1140 N=N(S)

1150 F=F(S)+F

1160 S=8-1

1170 RETURN

10 REM CALLING PROGRAM
TO COMPUTE FIBONACCI NOS.

RECURSIVELY
20 DIM N(50), F(50)
30 INPUTN
40 GOSUB 990
50 PRINTF
60 GOTO 30

Again, just as in the case of the factorial, iteration gives a
more efficient solution to this problem.

JULY 1980 Digital Design 21

970 REM SUBROUTINE 1000 CALCULATES THE

NTH FIBONACCI NUMBER
080 REM ITERATIVELY AND RETURNS IT IN F.
1000 F=1
1010 P=0
1020 FORI=1TON-1
1030 Q=F
1040 F=F+P
1050 P=Q

1060 NEXTI
1070 RETURN

{0 REM CALLING PROGRAM TO ITERATIVELY
COMPUTE FIBONACCI NOS.

20 INPUTN

30 GOSUB 1000
40 PRINTF

50 GOTO20 -

Although iteration gives better answers in both of the first
two examples of recursion, recursion is the desired tech-
nique for many problems because it greatly simplifies the
solution algorithm and its implementation in a BASIC
program.

Tower of Hanoi

Let’s consider two such problems. The first is the Tower of

Hanoi, a well-known problem nicely treated in a recursive

manner. This problem consists of three pegs, called pegs 1,

2 and 3, and D disks, all of different radius, and are to be

stacked on the pegs. Initially, the disks are stacked on peg 1

in order of decreasing size, with the largest disk on the bot-

tom. In this problem, you must move the disks from peg 1

to peg 2 under the restriction that you can only move them

one at a time from one peg to another, and that you may

never stack a larger disk on top of a smaller one. The recur-

sive solution, which generalizes the problem of moving D

disks from a peg called E to peg F, moves the top D-1 disks

on peg E to a third peg, then moves the one remaining disk

on peg E to peg F, and then moves all of the disks on the

third peg to peg F. In this way, the problem of moving D

disks is reduced to making two moves of D-1 disks. There-

fore, the recursive algorithm for moving the top D disks

from peg E to peg F is:

. If D=1, move top disk from E to F and return.

_ Let G be the number of the peg which is not E or F.

. Recursively call this procedure to move the top D-l
disk from E to G.

4. Move the disk on E to F.

5. Recursively call this procedure to move the top D-1

disk from G to F.
6. Return.

W b —

In the implementation, store the number of disks on peg
Lin T(1), for I = 1, 2, 3. When a recursive call is made, the
values that need saving are E, F and D. Then, the BASIC
version of this algorithm is: . :

960 REM - TOWER OF HANOI SUBROUTINE TO
MOVE THE TOP D(S) DISKS

970 REM FROM PEG E(S) TO PEG F(S). T(I) CON-

TAINS THE NUMBER

960 REM OF DISKS ON PEG 1. INITIAL CALL IS®

TO 990.

990 S=1

1000 IF D(S)<> 1 THEN 1050
1010 T(E(S)) = T(E(S)) - 1

77 Dinital Nacian 1111 Y 1UK0

- 1080 F(S)=G

1020 T(F(S))=T(F(S) +1

1030 PRINT “MOVE”; E(S); “TO™; F(S)
1040 GOTO 1190

1050 G=6-(E(S)+ F(S))

1060 S=S+1

1070 D(S)=D(5-1)-1

1090 E(S) = E(5-1)

1100 GOSUB 1000

1110 T(E(S)) = T(E(S)) - 1

1120 T(F(S)) = T(F(S)) + 1

1130 PRINT “MOVE™; E(S); “TO™; F(S)
1140 S=S+1 -
1150 D(S)=D(S-1)-1

1160 E(S)=6- (E(S-1) + F(S-1))
1170 F(S) = F(5-1)

1180 GOSUB 1000

1190 S=S5-1

1200 RETURN

10 REM CALLING PROGRAM TO SOLVE TOWER.OI‘:

HANOI PUZZLE.

20 REM T(1) CONTAINS THE NUMBER OF DISKS.

ON TOWER 1.
30 REM D(1)1S THE TOTAL NUMBER OF DISKS.

40 REM E(1) AND F(1) ARE THE SOURCE AND DES- -

TINATION TOWERS.
50 DIM E(20), F(20), T(3)
60 INPUT T(1)

70 T(Q)=0
80 T@3)=0 :
90 E(1)=1
100 F(1)=2

110 D(1)=T(1)

©120 GOSUB 990

130 GOTO 60

Quicksort algorithm

Let’s now consider a final useful application of recursion, "

the quicksort algorithm. You can easily program these effi-
cient and widely-used sorting algorithms recursively.
Suppose that you have stored values in A(L), ..., A(H)

and wish to place them in ascending order in the same stor-
age locations. The basic quicksort algorithm chooses some

arbitrary value from this list, say X = A(K), and then re-
arranges the values so that all values smaller than X are lo-
cated before it in the list and all values larger than X are lo-
cated after it. Then X will be located at its correct sorted
position in the list of, say, A(I). The same algorithm is then
recursively applied with L and I-1 in place of L-and H, and
then again applied, with I+1 and H. When calling the algo-
rithm with L = H, it simply returns.

The only part of the algorithm that needs some addi-

tional attention is the process of rearranging the list so that:

X is in its proper position and all other values lic on the
proper side of X. By keeping two pointers, I and J, you re-
arrange the list. | starts by pointing at the first position in
the list, L. J points to H. Then as pointer I moves down the
list. it encounters a value no smaller than X. This value of
A(1) should, therefore, lie below X in the list. Next, pointer
J moves up the list until it encounters a number no larger
than X. That number is exchanged with A(1); both are then
in the proper part of the list relative to the eventual posi-
tion of X. Repeat the process until I and J cross. At that
point, the rearrangement is complete, as the following ex-
ample of the process shows:

60 it s
94 e 9
49 49
95 95
157

The following program implements this process: :
950 REM QUICKSORT-SUBROUTINE TO REAR-

RANGE A(L(S)) THRU A(H(S))

960 REM SO THAT ALL VALUES <= X LIE BE-

[FORE X AND ALL VALUES

970 REM >= X LIE AFTER X WHERE X = A (INT
((L(S) + H(8))/2)).

980 REM INITIAL CALL TO 990 SORTS A(1)

: THRU A(N).

990 S=1

994 L(1)=1

997 H(1)=N

1000 IF L(S) >= H(S) THEN 1270

1010 = INT((L(S) + H($))/2)

1020 x A(M)

1030 1=L(S)

1040 J=H(S)

1050 IF A(T)>= X THEN 1080

1060 1=1+1

1070 GOTO 1050

1080 IF A(J)<= X THEN 1110
1090 J=1J-1

1100 GOTO 1080

1110 IFI>JTHEN 1170

1120 T = A()
1130 A®)= A(J)
1140 A(J)=T
1150 I=I+1
1160 J=1-1

1170 IF I<=J THEN 1050
1180 1(8)=1

1190 S=S+1
1200 L(S)=L(S-1)
1210 H(S)=]J
1220 GOSUB 1000
1230 S=S+1

1240 L(S)=I(S-1)

1250 H(S)=H(S-1)

1260 GOSUB 1000

1270 - S§=8-1

1280 RETURN

10 REM CALLING PROGRAM FOR QUICKSORT.

20 REM A(1) THROUGH A(N) CONTAIN NUMBERS

TO BE SORTED.
30 DIM A(100), L(20), H(20), 1(20)
40 INPUTN

50 FORI=1TON
60 A(l)= RND(0)
70 NEXTI

80 GOSUB 990

90 FORI=1TON
100 PRINT A(l);
110 NEXTI

120 GOTO 40

24 Digital Design JULY 1980

.tion. Statements 1010-1170 perform the partitioning of the

* tion for recursion involves tree searching. This application

Statement 1000 in this program is the test for termin

list into those values smaller than X and those larger than X. .
Two recursive calls follow the partitioning. Only three val-
ues, I, L and H, are saved during the recursive call. £
Quicksort example] e {
An illustration of an execution of the quicksort algorithm = 2
appears as follows. The far left column contains the original =
list of ten numbers. The circled numbers are the values used !
for X, and the number-pairs in rectangles are the values of L

and H used to partition the list. Note that the procedure be- |
gins with L= 1, H = 10, X = 46, Partitioning in the fifthpo- - ' |
sition then places X. Next the process is called for X =3, ’ '
L=1,H=4, and X =49, L = 6, H = 10. The process con- gy
tinues in this way until all values are correctly sorted.

R120E e
15 i
60

44

94
a9
8 T
3. 15,)
JUEESSRR SR, S 0 L T R S NP, R mmmg.mhuﬁ %
Tree searching

These few examples indicate the ease and convenience of
doing recursion in BASIC. Another larger area of applica-

is especially useful for searching game trees or for otherap-
plications that need a strategy to be determined througha -
choice between alternatives, i

ABOUT THE AUTHOR

Herbert Dershem is Chairman of the Department of Com-
puter Science at Hope College, Holland, Michigan. He has a
Ph.D. in Computer Science from Purdue University.

Rate this article: circle 6L, 6M or 6H
on Reader Inquiry Card.

If your address label is prmted inred,

peel off label, affix to form on page 11,
fill out form and returntous to

continue your free subscription. .

