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Recursive
Prograrnmin€

inBASIC
BY HERBERT L. DERSHEM

Recursive algoithms are anathemr to the personal compul
ing programmer. Their feputation suffers from the belief
that fecursion requires a large, powerful computer and a
fancy language. People consider recursive programming so
complicated that you need a degree in computer science to
understand it. But no one with thst much experience would
bolher with recursion. lt is, so the myth go€s, highly ineffi-
cient, wasteful ofr€sources and only a loy for acad€mics to
play with.

But the myths arc false. Recunion can be a valuabl€ tool
on a personal computer using BASIC and should be in every
programmels reperioire.

Anything is recursive if it is defined in terms ofitself. In
programming, a recursive subroutine is one that calls on it,
sell People commonly confuse recursion wilh iterution;
both can be used to solve the same problem,

But recucion and iteration are cleafly distinct. A proc€.
dure is it€rative ifthe same process is performed many
times. A procedure is recursive ifin the middle of its execu-
tion ii cals upon itseli A fecursive procedure begins anoth-
ei ex€cution ofitselfbefore ihe original is finished. Such
a procedure has more than one execution in pfogress ai a
given time;an iteraiive procedure never has morc than on€.

Nor every languaBe implemenrat ion pern' i rs recuision.
In BASIC, recunion is only possible ifit is permissible to
call a subroutine frorn itselfand stil retain the ability of
the original execution to return to the proper point. The
fol loMng program can le\ l  your BAslc fo- recursion
capability.

10 Rtt t  TEst !0R Iu! tBr lrrY o! TIt l
aasrc t0 pl t !oR{ tEcotslolr .

2 0  [ = 1
l 0  T = 0
4 0  G O S U B  1 0 0
5 0  I r  I < > 2 * [ - 1  T g t l l  1 ? 0

8 0  G O T O  3 0

Every call ofsubroutine 100 increments I by one. The
Nth call will result in I being set to N and a return without
a recursive call. This will retun to each of the previous te-
vels, incrementing I by one on each return, On the final
return, I should equal 2*N- I if the pfocess was carried out
correctly. Thus, ifthe above prograrn runs for a given value
ol N, lhe \ ,els ion of BASIC used wi l l  a l low N. I  recursrve
calls. Many velsioas ofBASIC have virtually no limit on th€
number of such calls possible. Ifthe BASIC is not recursive
to the appropriate level for some value ofN, ir will usually
respond with som€ iype of diagnostic message rather than
arrive al statement 170.

Ifyour computer's BASIC allows recursive subroutines,
you now face the problem oflvriting them. Here\ a general
outline ofa recunive subroutine in BASIC.

L Ifthe firsi call, initialize the stack pointer-
2. If temination condition, compute resultidecremeni

stack pointerireturn.
3. Do computation.
4. Save n€cessary values in stack.
5. Increment stack poinier.
6. Recursively call this sub.ouiine.
7, Restorc saved values from the stack,
8. Do any remaining computation.
9. Decrement stack pointer.
10. Reiurn.

1 0 0  I = I + 1
I 1 O  I F  I < [  T H l N  ' I 3 0
r  ?0 iE l l t r !
1 1 0  e o  s u B  1 0 0
140 Ir  I>2*n- 1 Tf lElr  ' t70
1 5 0  I = r +  1
1 60 tEl0Rl l
1 ' t0 t ! I l lT tr [ct  t !c0RsIv!( i t {-1i t rTIt tEs. t r
1 8 0  ! ! r D
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\vhen you re.uajvely cail a sJbrouline ,rom itself.Ihe
variables in the called execution destroy the variables of the
same name in rhe calling execurion. To preserve ihe original
values of these variables, save in a dirnensioned vanable
(caled a stack) those vanables you need lo recall later. Sup-
;ose vour subroutine has three variables (xJ and z) it
wirhes to save tor recal l  when i l  retums lrom a re.ursive
call. The format of the stack dimensioned riable A lbr
this subroutine would be:

A(l) X from execuiion I
A (2) Y from execution 1
A (3) Z from execution I
A (4) X from execution 2
A (s) Y irom execution 2
A(6) Z from execution 2

To keep track of tlle position in the stackwhele the

currenl execuiion saves its values, a pointer is used' This
oointer is incremeflted by the required nunber, in the
atove exanple 3, every time a.ecursive cal is made, and

de( emenleo by lhe same amounl on ea!h Ielurn'
' the 

seneral  recursive procedure ourl ined above shoss
only on; tecursive cal l  rn lhe subroudne. In genetal  s leps 3
to 8 may be repeated several timesbefole the return at
steDs 9 and 10.

Lt\ take a recursive sr.rbrouline and see how lhese sleps

are implemented. The factorial is the standald fitst example
ofrec;nion - unfortunately, because it also represents a
Droblem where rcculsion rs not the best way ro oblain a
;olulion. HoweveI, ir i( the rnosr familiar and simplesl of

all examples. so why bleak tradiiion?
The common definiiion of N facrorial (Nl) is iterative:
0 ! =  I
N : = N -  ( N - l )  -  ( N - 2 } "  * 2 a l  f o r N = I . 2

But there is also a Iecursive definition ofN faclorial:
0 ! =  I
N '  = N  *  O { - 1 ) r  f o r  N = l , 2 , . . .
ln this cas; the factoriai is defined in terms ofitself,but

with one escape clause which occurs at 0!. The recuaive

form of a subloutine to compute N! isl

960 iE[ tnrs st !Ro0Tr[!  col tPoTEs N
FACIORITI ,  RECI ' !S I ! ! I ,Y  AND

970 r l t  Srol ls l l l !  RlsolT r I  ! .
t l tE l rRsT cAL!,  rs To 990'

980 ! ! t t  tErs lRocRlt t  rs r t{  RlDro
sBlcK l , !v!L r  BASrC-

9  9 0  s : l
1 O 0 O  I F  n = 0  l D B l l  l = 1 :  s - s - 1 :  R I T S R N
l 0  t 0  c  ( S )  = n
t  0 2 0  s = s + t
1 O 3 O  { = I - ' !  l c c s ! !  1 0 0 0
1 0 4 0  N = A  { s )
1 0 5 0  l = N * r
1 0 5 0  s = s - 1
1 0 7 0  ! r r u i N

In this program, statement 990 colresponds to step I in

rhe gened algori lhm given eal[er.  Slarement l000corre_

soon-ds ro step 2, -here rhe terninalion condilion is N=0
The stack is increnented and decremenied bv I in this pro-

sram becaus€ only one va rable. N. is raved when a lccursive
;aI is nade. No compulations in this plogram correspond

to step 3 of the general atgorithm, and slatements 1010 to

l07O corespond lo(Iepr4ro l0 reipecr ivelv
of cou$;,  lhe simpra'  i lera ive version of lhe factor ial

subroutine executes much faster:

910 8eI  I I IRATII '  S l ]ElOoTI l lE
IO COITPOIEB N IACTOiI IL

980 t l r  axD sro! !  r1 r l l  P.
990 REr{  l l l ls  PRocrat  rs  tn

RADrO SqlC!(  t t {El  r  B lsrc.
1 0 0 0  r = 1
1010 IF !<=1 I l lE l l  l lToRl{
1 0 2 0  r o r  I = 2  1 0  N
1 0 3 0  ? = F I' t  040 lrxT r
1050 l lTol l l

Another common exampie ofrecursion is ure computa'
tion ofihe Fibonacci sequence ofnumbers- The Nth num_
ber in the Fibonacci sequence, F(N), is defined in terms of
its two predecessors.

F(0) = 0
F(1) = 1
F ( N ) =  F ( N - l ) +  F ( N - 2 )  f o r N  = 2 ,  3 , . . .
Your BASIC rcrsion of this algorithm is:

9-70 ! !r  50BRO0lrN! 990 cALCoLl l lS
1l lE Nt l  FrBOnrccr Not lBlR

o 8 0  ! ! i  ! ! c D l s r v E l Y  a { D  D E T 0 n  S
I T  T r {  F .  n . S .  L I V F L  T  B r S l C .

9 9 0  s = 1
1 0 0 0  I F  ( F = 0 )  +  ( ! = 1 )

Tg!I  !=I :  S=5-2: RE t l t  !N
I  ( s )  = !
s=s+2
n = I - 1 :  G O S ! B  1 0 0 0
l r=a (sl
A  ( s + 1 )  = !

t l=N-2:  G0sl tB 1000
! - r  t s + 1 ,  + !
S-S-2
RtT0t  t !

1  0 1 0
0 2 0
0 3 0
0 tr0
0 5 0
0 5 0
0 7 0
0 8 0
0 9 0

1 1 0 0

ln this example. there are two stack enlries for each call
level. The Stil entry in A is the value of N for that call lev€I,

and the (St1)st is the value of F(N-1)
Again. as in the case of the factorial. iteration gives a

mo!€ €fficient solution to this problem

970 !Et!  SttBiolTr[E 1000 cr lcol^Tls
tli i !Tll !tBoNlccr llltltB!l

980 lEt r t ! !al t rr lY IND lET0RliS rr  t [  F '
990 ! ! t l  I t  rs l lRrTTEl l  r !  l lDro

st i lcK l ! t ! !  I  BASIC.
0 0 0  I = 1 r P = 0
0 t 0  F O i  I = t  T O  n _ l
020 0=r
0 3 0  ! = ! + ?
0q0 P:Q
0 5 0  N l r t  r
015 0 RlTotI

Although your first two ex3mples of recursion could be
better done iterativelv. recursion is the desired lechnique
for many pfobiems because it greallv simplili€s ihe solution
dnori lhm ,nd ia i .pt" . ' .n larron in a BASIC p'ogram-Now 

consrder t .o such p oblems lhe f i lsr  is rhe fower

of Hanoi, a well-known problem which is nicely treated ln

a recu$ive manner. This problem consists ofthree pegs,

which we will cali pegs 1,2 and 3, and D disks, all ol differ-
ent radius, which can be stacked on the pegs. Initiallv the

thsks are stacked on peg 1 in older of decreasing size with
rhe larqest disk on the bottom. The problem is to move the

disks from peg 1 to peg 2 with the restriclion th't disks

must be moved one at a time from one peg to another, ano

L\at no disk;ay ever be stacked on top ofa sn'.ller disk'
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^ The recu r i \e solut ion generaj izes lhe problen io move
u osis lron peg I- ro peg F by moving rhe top D.l disks onpeg E ro rhe {jtrd pe8. moving Lhe one remaining djsk onpeg F to pe€ f. and rher moving alJ of Lhe disks on tle thi,dpeg io peg f.J1;s reduces rhe problem of moving D disks ro
lru moves.ol  D. I  di .ks. The recJrsive aiCoriLhmlor moving
the top D disks from peg E to peg F is:

I If D=l . move top disk f(om E to F. rcturn
2 l.er c oe rhe nlmber oi rhe peg wtuch is nor E or F.
r .  Kecu.rr lety ca l rr  procedure lo move rhe rop D-l

disks fron E ro c.
4. Move the disk on E io F.
5. R€cursively calt this procedure to move th€ top I}1

disks fron C to F.
6. Return

-. In orrr implenrentation,store the number of dlsks on peg
I in A(I), for I=1,2,3. The values that neeal to be sav€d
when a recursive cal l  is made are t ,  F and D. Our BAslc
rersinn of thrs alSorithm is rhen:

9?0 ! !d Tot lR o! I t l l to l  suBRo0TlNE
TO I 'OVB TIE tOP D DISCS

980 RE! rro ! !c !  To PEG r.g I I T T E I  I ! I  R . S .  ! E ! E I .  I  B A S I C .

rhe lisr relarive to the eventua] position ofX. Th< !jocess rsrepeat€d unl i l  I  and J cross. Al  ! } la l  poinl  lhe red,raEe.
ment a completed. Figure 1 shows an exampie ofthi;

The proeram to accornplish this process is:

960 FE!  QOICT(SORT_SOBIOUI IN '  TO
-  R E t n n a i c !  A ( ! )  T H F 0  A ( f l )  S O  T H l tc 7 0  ? E [  l l t  v r l o B s  < = x  L I i  i E r o n E  x

I N D  T L I  V A I U E S  > = X  l T E  A I T E R .
9 8 0  i E ! {  x  I s  A t r r { T { ( L + 0 , / 2 } .  I N I T T A L

c a L L  T 0  9 9 0  s o r T s  r ( l l  _ a ( N ) .

I r  l > = i  c o t o  1 1 0 0
[=INT ( ( I { f l )  /2) :  r=a ( | l ]  :  r=L: JEBM ( I ' < t r  T H E I  I = I + 1 :  c o T o  l 0 2 o
I l  l ( .1) >I Af i !N i t=i t - t :  cOTo 1030
r F  I < = J  r s B  r = r  { r ,  :  A  ( r t  = A  ( i r t  :
r  ( J l  = 1 :  r = r +  1  : , t = J -  I
IF I<=,t  THIN GoTO 1020
A ( s ) = I : l l s + 1 ) = f l
E = J r  5 = S + 2 : c o s 0 B  1 0 0 0
I = r  ( S l  :  B : t  ( s + 1 1
l  = r :  s = s + 2 r  c o s o !  1 0 0 0
S : S - 2 :  i ! 1 0 ! N

9 9 0
r  000

|  0 1 0
1 0 2 0
1 0 3 0
1 0 4 0
1 0 5 0
1 0 6 0

1 0 7 0
1 0 8 0
1 0 9 0
1 1 0 0

_ Now consider a finat useful application of lecursion.
Lhe qurcksort  atgorirhm. one of lhe mosr eff ic jent and
wjd€Iy used sorting algoritlms, is very easily programmed

Suplose w€ have values storcd in A(L), . . ., AGD and
vr'e wish to place the values in ascending order in ne same
storage locations_ The basic quicksort algorithm chooses
some arbitrary value fiom this lisr, say X=A(K), laen re"
arranges tlre values so thai ali values smaller than X are
located befor€ ii in the lisr and all values larser than X are
located after it. Then X will be at its correctsorted position
in rhe iisr. say A{l). The came algorirhm is fien recu;sivety
applied wrrh L and l-l in place of L ard H, and rhen aqain
applied using I+l and H. when the algorithm iq calted wirh
L=8, we srmpry return.

The only part ofthe algorithm thai needs some addi

r !  D = 1  I  t ! l  = l ( 8 , - t : r ( p , - A  ( F , + 1 .
PFrNt  nf i0vE n,  E i  t rTO, i  i  p :  cOtO 10 90
G  = 6 -  { E + t l
a  ( s )  = t :  A ( s + l ) = p :  t ( s + 2 ) = D
s = s + 3 :  D = D -  1 :  F = c
c 0 s 0 s  1 0 0 0
r=a  (s l  :  r= t (s l1 ) :  D=r (S+21
r  ( E l  - r  ( l t  - 1 .  r  ( r l : r ( r ,  + 1 :
PRr!T ( I l0V ! i r .  E. t rTOr i  F
s = s + 3 :  D = ! - 1 :  ! ' = 6 -  l ! + !  I
c 0 s 0 !  1 0 0 0
s=s-3
RlT0t  l l

9 9 0
1 0 0 0
1  0 1 0
1 0 2 0
1 0 3 0
1 0 r r 0

1 0 5 0
1 0 6 0
1 0 7 0
i  0 8 0
1 0 9 0
1 1 0 0

In this progmm, star€ment lOO0 tesls fof termination.
Stat€nents l0l0 to 1050 partjtion the list into lhose values
smaller than X and those larger than X. The rwo recursive
calhJol los staremenr t050. only Lwo values,I  and H, are
saved during ihe recunive call,

.  An r l lustrat ion ofan execul jon of lhe quicksort  algo-
r i thm is grven in Fi8ure 2. The o'rginat t i r r  otren numbers is
round on Ihe far lefi. The circled numbels are Lhe vaiues
used for X. and the number-parrs in recranqtes arc tne
vdlues oi  L and H used to parnt ion rhe l is l .  \oie rhar we
begin with L:l, H=10. X=46. X is tien placed by partition-
ing in !}le lfrh position. Nexr rhe oroce(s rs ca ed lor X=J,
L-1. H=4 and X-49, L=6. H= tO. The proces\ conlrnues In
this way unlil all vaiues are correcdy so ed. tr

X is in its proper rosiiion and all other values lie or Lne
proper side ofX. Keeping two pointers,I and J, accom-
plhlEs ihis process. I starts by pointing at the lirsr position
in the list, L. J points to H. Then pointer I is moved down
the list until a value is encountered which h no smalier
than X. This value of A(I) should therefore Lie betow X
in the list. Next pointer J is moved up the list until it en-
counlers a nunber no large, than X. Thar nurnber is ey-
changed wi$ A(I), and boih are rhen in rtre proper parr of

I->12 t2 t2 12 12 12 1.2
75 I  >15 3 I  3 J Jb 0  o o l > o 0 t . \ 0  4 4  A

-  1 3  1 3  1 3  1 3  I  > 1 3  l 3 r _ > l J
x >46 X->46 X-N6X->46 JX_>46IJX >46X >46

44 44 44I >44 60 60I_X0
94 94 94 94 94 94 e4
49 49 49 49 49 49 49
95 95 J >95 95 95 95 95J  > 3 J - > 3  7 5  7 5  7 5  7 5  7 5

Frgure I
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