~ Income Taxes ¢ Simple Game Playing Field e Apple IXS

Personal Com

Publication Number USPS 370-770

.....
......

......
.....

........

...........
.....
ooooo
.....

........

........

Cover Hlustration
by Mark Sewell

DEPARTMENTS

FEEDBACK- 3
RANDOM ACCESS9
COMPUTER BRIDGE . .53
FIRMWARE FACTS ...56
_ COMPUTER CHESS .. .62

BOOKSHELF74
WHAT’S COMING UP .76

ADINDEX...........111

APRIL 1979 VOL. 1IINO. 4

COVER STORY

TaxBase

This comprehensive income tax data base program not only stores tax
~ information for immediate retrieval, but also prints daily and year-end
reports helpful when preparing your tax forms. by Paul Holliday

Programming Your Computer foraTax Deduction........c.c.co.0es i

A tax consultant shows how converting your computer hobby into a small
business can shrink your tax bill. by Mark Battersby

The Incredible Time Machinesccoooiareerneaeercrrrnnnzimsens?

The author, a management consultant, shows how small businesses can use
computers most effectively — not in the accountant’s office, but on the
executive’s desk. By taking over routine or time-consuming tasks, a
computer can free the executive for more important matters such as plan-
ning and decision-making. by Kirtland H. Olson

How to Add Graphs to Your Computer Outputcooccoceseinsre

A valuable visual aid, graphs can provide quick analysis and comprehen-
sion of statistical material. Use the TAB function to produce graphs for
business reports and presentations, or for school papers and projects.

by R. Tickell

LAUNCHING PAD

Apple I1, Artist EXtraordin@ire.oncnovsecernsntnasuonesessnsensnes

Your Apple Il can produce original pop-art images on your color television
screen. As you rate each picture, the computer modifies it, creating designs
expecially suited to your aesthetic tastes. The computer even names its
creations for you! by Raymond T. Vizzone

DIGGING IN

Recursive Programming in BASICcoocvevnvnreieesne e

You don’t need a large computer and a complicated language to program
recursive procedures. Just use the techniques described in this article, with
your micro and BASIC, and you'll add a valuable tool to your repertoire.
by Herbert L. Dershem

ON THE LIGHTER SIDE

A Simple Game-Playing Fieldccooierieneceireanesiinssst

This subroutine, designed primarily for games, lets you usc a 100 x 100
playing field without requiring lots of memory or bookkeeping.
by L.D. Stander

@ Copyright 1979, Benwill Publishing Corp., a Morgan-Grampian Co.

APRIL 1979 Personal Computing 1

Recursive
Programming

in BASIC

Recursive algoithms are anathema to the personal comput-
ing programmer. Their reputation suffers from the belief
that recursion requires a large, powerful computer and a
fancy language. People consider recursive programming so
complicated that you need a degree in computer science to
understand it. But no one with that much experience would
bother with recursion. It is, so the myth goes, highly ineffi-
cient, wasteful of resources and only a toy for academics to
play with,

But the myths are false. Recursion can be a valuable tool
on a personal computer using BASIC and should be in every
programmer’s repertoire.

Anything is recursive if it is defined in terms of itself, In
programming, a recursive subroutine is one that calls on it-
self. People commonly confuse recursion with iteration;
both can be used to solve the same problem,

But recursion and iteration are clearly distinct. A proce-
dure is iterative if the same process is performed many
times. A procedure is recursive if in the middle of its execu-
tion it calls upon itself. A recursive procedure begins anoth-
er execution of itself before the original is finished. Such
a procedure has more than one execution in progress at a
given time; an iterative procedure never has more than one.

Not every language implementation permits recursion.
In BASIC, recursion is only possible if it is permissible to
call a subroutine from itself and still retain the ability of
the original execution to return to the proper point. The
following program can test your BASIC for recursion
capability.

10 REM TEST FOR THE ABILITY OF THE
BASIC TO PERFORM RECURSION.

20 ¥=1

30 T=0

40 GOSUBR 100

50 TF I<>2%N-1 THEN 170

60 PRINT "RECURSIVE"3;N—1:"TIMES."

T0 N=N+1

80 GOTO 30

16 Personal Computing APRIL 1979

BY HERBERT L. DERSHEM

100 I=TI+1

110 TF I<N THEN 130

120 RETURN

130 GOSOB 100

140 IF I>2%N-1 THEN 170

150 I=T+1

160 RETORN

170 PRINT "NOT RECURSIVE";N-1;"TIMES."
180 END

Every call of subroutine 100 increments I by one. The
Nth call will result in I being set to N and a return without
a recursive call. This will return to each of the previous le-
vels, incrementing I by one on each return. On the final
return, I should equal 2*N-1 if the process was carried out
correctly. Thus, if the above program runs for a given value
of N, the version of BASIC used will allow N-1 recursive
calls. Many versions of BASIC have virtually no limit on the
number of such calls possible. If the BASIC is not recursive
to the appropriate level for some value of N, it will usually
respond with some type of diagnostic message rather than
arrive at statement 170.

If your computer’s BASIC allows recursive subroutines,
you now face the problem of writing them. Here’s a general
outline of a recursive subroutine in BASIC.

1. If the first call, initialize the stack pointer.

2. If termination condition, compute result; decrement
stack pointer; return,

3. Do computation,

4. Save necessary values in stack,

5. Increment stack pointer,

6. Recursively call this subroutine.

7. Restore saved values from the stack.

8. Do any remaining computation.

9. Decrement stack pointer,

10.Return.

When you recursively call a subroutine from itself, the
variables in the called execution destroy the variables of the
same name in the calling execution. To preserve the original
values of these variables, save in a dimensioned variable
(called a stack) those variables you need to recall later. Sup-
pose your subroutine has three variables (x,y and z) it
wishes to save for recall when it returns from a recursive
call. The format of the stack dimensioned variable A for
this subroutine would be:

A (1) X from execution 1

A (2) Y from execution 1

A (3) Z from execution 1

A (4) X from execution 2

A(5) Y from execution 2

A (6) Z from execution 2

ete.

To keep track of the position in the stack where the
current execution saves its values, a pointer is used. This
pointer is incremented by the required number, in the
above example 3, every time a recursive call is made, and
decremented by the same amount on each return.

The general recursive procedure outlined above shows
only one recursive call in the subroutine. In general, steps 3
to & may be repeated several times before the return at
steps 9 and 10.

Let’s take a recursive subroutine and see how these steps
are implemented. The factorial is the standard first example
of recursion — unfortunately, because it also represents a
problem where recursion is not the best way to obtain a
solution, However, it is the most familiar and simplest of
all examples, so why break tradition?

The common definition of N factorial (N!) is iterative:

0!=1

N!=N* (N-1) * (N-2)*. . .*2*1 for N=1, 2,. ..

But there is also a recursive definition of N factorial:

0l =1

N!=N * (N-1)! for N=1,2, ...

In this case the factorial is defined in terms of itself, but
with one escape clause which occurs at O!. The recursive
form of a subroutine to compute N! is:

960 REM THIS SUBROUTINE COMPUTES N
FACTORIAL RECURSIVELY AND

970 REM STORES THE RESULT IN F.
THE FIRST CALL IS TO 990.

980 REM THIS PROGRAM IS IN RADIO
SHACK LEVEL I BASIC.

990 s=1

1000 TF N=0 THEN F=1: S=S-1: RETURN

1010 A (S)=N

1020 $=S+1

1030 N=N-1:GCSUB 1000

1040 N=A(S)

1050 F=N*F

1060 S=S-1

1070 RETURN

In this program, statement 990 corresponds to step 1in
the general algorithm given earlier. Statement 1000 corre-
sponds to step 2, where the termination condition is N=0.
The stack is incremented and decremented by 1 in this pro-
gram because only one variable, N, is saved when a recursive
call is made. No computations in this program correspond
to step 3 of the general algorithm, and statements 1010 to
1070 correspond to steps 4 to 10, respectively.

Of course, the simpler iterative version of the factorial
subroutine executes much faster:

970 REM ITERATIVE SUBROUTINE
TO COMPUTER N FACTORIAL

980 REM AND STORE IT IN F.

990 REM THIS PROGRAM IS IN
RADIO SHACK LEVEL I BASIC.

1000 ¥=1

1010 IF N<=1 THEN RETURN

1020 FOR I=2 TO N

1030 F=F*1

1040 NEXT T

1050 RETURN

Another common example of recursion is the computa-
tion of the Fibonacci sequence of numbers. The Nth num-
ber in the Fibonacci sequence, F(N), is defined in terms of
its two predecessors.

F(0)=0

F(1)=1

F(N)= F(N-1) + F(N-2) for N=2,3, ...

Your BASIC version of this algorithm is:

970 REM SUBROUTINE 990 CALCULATES
THE NTH FIBONACCI NUMBER

980 REM RECURSIVELY AND RETURNS
IT IN F. R.S. LEVEL I BASIC.

990 s=1

1000 IF (N=0)+ (N=1)
TH?N F=N: S=S-2: RETURN

1010 A (S)=N

1020 S=S+2

1030 N=N-1: GOSUB 1000

1080 N=RA(S)

1050 A (S+1)=F

1060 S=S5+2

1070 ¥=N-2:G0SUB 1000

1080 F=A(S+1)+F

1090 S=S-2

1100 RETURN

In this example, there are two stack entries for each call
level. The Sth entry in A is the value of N for that call level,
and the (S+1)st is the value of F(N-1).

Again, as in the case of the factorial, iteration gives a
more efficient solution to this problem.

970 REM SUBROUTINE 1000 CALCULATES
THE NTH FIBONACCTI NUMBER
980 REM ITERATIVELY AND RETURNS TT IN F.
990 REM IT IS WRITTEN IN RADIO
SHACK LEVEL T BASIC.
1000 F=1:P=0
1010 FOR I=1 TO N-1

1020 Q=F
1030 F=F+P
1060 P=0

1050 NEXT T
1060 RETURN

Although your first two examples of recursion could be
better done iteratively, recursion is the desired technique
for many problems because it greatly simplifies the solution
algorithm and its implementation in a BASIC program.

Now consider two such problems. The first is the Tower
of Hanoi, a well-known problem which is nicely treated in
a recursive manner. This problem consists of three pegs,
which we will call pegs 1, 2 and 3, and D disks, all of differ-
ent radius, which can be stacked on the pegs. Initially the
disks are stacked on peg 1 in order of decreasing size with
the largest disk on the bottom. The problem is to move the
disks from peg 1 to peg 2 with the restriction that disks
must be moved one at a time from one peg to another, and
that no disk may ever be stacked on top of a smaller disk.

APRIL 1979 Personal Computing 17

The recursive solution generalizes the problem to move
D disks from peg E to Peg F by moving the top D-1 disks on
peg E to the third peg, moving the one remaining disk on
peg E to peg F, and then moving all of the disks on the third
peg to peg F. This reduces the problem of moving D disks to
two moves of D-1 disks. The recursive algorithm for moving
the top D disks from peg E to peg F is:

1. If D=1, move top disk from E to F; return.
2. Let G be the number of the peg which is not E or F.
3. Recursively call this procedure to move the top D-1
disks from E to G.
4. Move the disk on E to F.
5. Recursively call this procedure to move the top D-1
disks from G to F.
6. Return
In our implementation, store the number of disks on peg
Lin A(I), for I=1, 2, 3. The values that need to be saved
when a recursive call is made are E, F and D. Our BASIC
version of this algorithm is then:

970 REM TOWER OF HANOTI SUBROUTINE
TO MOVE THE TOP D DISCS
980 REM FROM PEG E TO PEG F.
WRITTEN IN R.S. LEVEL I BASIC.
990 s=u
1000 TF D=1 R(E) =A(E)~1:A (F)=A (F)+1:
PRINT "MOVE";E;"TO":F:GOTO 1090
1010 G=6—(E+F)
1020 A (S)=F: A(S+1)=F: A(S+2)=D
1030 S=S+3: [=D-1: F=G
1040 GOSUB 1000
1050 E=A(S) : F=A(S+1): D=RA (5+2)
1060 A(E)=A(F)=1: A(FY=A(F) +1:
PRINT "MOVE";Ez"TO";F
1070 S=S5+3: C=D=1: E=6- (E+F)
1080 GOSUB 1000
1090 s=5-3
1100 RETURN

Now consider a final useful application of recursion.
The quicksort algorithm, — one of the most efficient and
widely used sorting algorithms, is very easily programmed
recursively,

Suppose we have values stored in A(L), .. ., A(H) and
we wish to place the values in ascending order in the same
storage locations. The basic quicksort algorithm chooses
some arbitrary value from this list, say X=A(K), then re-
arranges the values so that all values smaller than X are
located before it in the list and all values larger than X are
located after it. Then X will be at its correct sorted position
in the list, say A(I). The same algorithm is then recursively
applied with L and I-1 in place of L and H, and then again
applied using I+1 and H. When the algorithm is called with
L=H, we simply return.

The only part of the algorithm that needs some addi-

the list relative to the eventual position of X. The process is
repeated until I and J cross. At that point the rearrange-
ment is completed. Figure 1 shows an example of this
process,

[—>12 12 12 12 12 12 12
15315 3 3 3 3 3
60 60 I—>60 I—>60 44 44 44

13 13 13 I3 =>13 13 1—2>13
X—>46 X—>46 X—>46 X—>46 IX—>46 [IX—>46 X—>46

44 44 44 J—>44 60 60 I—>60

94 94 94 94 94 94 94

49 49 49 49 49 49 49

95 95 J—>95 95 95 95 95
> ad=>32 75 75 . 7% 75 75
Figure 1

The program to accomplish this process is:

960 REMNM QUICKSORT-SUBROUTINE TO
REARRANGE A(L) THRU A(H) SO THAT

970 REM ALL VALUES <=X LIE BEFORE X
AND ALL VALUES >=X LIE AFTER.

980 REM X IS A(INT((L+U)/2). INITTAL
CALL TO 990 SORTS A (1) -A(N).

990 L=1: H=N:S=N+1

1000 IF L>=H GOTO 1100

1010 M=INT((L+H) /2): X=A(M): I=L: J=H

1020 IF A(T)<X THEN I=I+1: GOTO 1020

1030 1F A(J) >X THEN J=J-1: GOTO 1030

1080 IF ¥<=J THEN T=A(I):A(I)=A(J):

A(J)=T:I=I+1:3=J-1

1050 IF I<=J THEN GOTO 1020

1060 A (S)=X:A(S+1)=H

1070 H=J:5=5S+2:GOSUB 1000

1080 I=A(S):H=A(S+1)

1090 L=I:S=S+2:G0SUB 1000

1100 S=S-2: RETURN

In this program, statement 1000 tests for termination.
Statements 1010 to 1050 partition the list into those values
smaller than X and those larger than X. The two recursive
calls follow statement 1050, Only two values, I and H, are
saved during the recursive call.

An illustration of an execution of the quicksort algo-
rithm is given in Figure 2. The original list of ten numbers is
found on the far left. The circled numbers are the values
used for X, and the number-pairs in rectangles are the
values of L and H used to partition the list. Note that we
begin with L=1, H=10, X=46. X is then placed by partition-
ing in the fifth position. Next the process is called for X=3,
L=1, H=4 and X=49, L=6, H=10. The process continues in

Xis in its proper nosition and all other values lie on the
proper side of X, Keeping two pointers, T and J, accom-
plishes this process. I starts by pointing at the first position
in the list, L. J points to H. Then pointer I is moved down
the list until a value is encountered which is no smaller
than X. This value of A(T) should therefore lie below X

in the list. Next pointer J is moved up the list until it en-

this way until all values are correctly sorted. O

12 12 S LIS e s el S

i R i il D B W) LS S
that 60 44 @E}!!l\“i3 [o
13 13 13 e

(Cloy 1510 AR
44 60 R e ST YRS R
94 94 [6-101 94 G0t

49 @ GO0 94 @D 75

95 95 95 QODA8-10 75 94
3 75 75 75 LA

Figure 2

counters a number no larger than X. That number is ex-
changed with A(I), and both are then in the proper part of

18 Personal Computing APRIL 1979

