

SHOGI: GAMES FOR YOU TO PROGRAM ATARI SOUNDS - CRYPTARITHMS
TEXAS INSTRUMENTS GRAPHICS
Volume 8 Number 3
Nov-Dec 1979

TRS-8O: TOWER OF HANOI

BY HERBERT L. DERSHEM

Abstract

Several issues ago we published a couple of program examples using recursion. At that time, we asked if anyone had other home computer applications that were based on recursive procedures. Tower of Hanoi, as presented here, makes excellent use of a recursive technique for implementing the "move" section of the program.

But, beware!! If your micro does not have a recursive BASIC, this program will not work for you as it is written. You will have to alter lines 1000-1100.
$-R Z$
This program is a version of the Tower of Hanoi puzzle, also commonly known as Donuts (see "Donuts for Kids" by Ron Sontore in Calculators/Computers, November, 1977). The puzzle consists of N doughnut shaped discs, of different diameters, and three vertical towers on which the discs can be placed. The problem begins with all the discs on the leftmost of the three towers, called Tower 1. The larger discs are at the bottom of the stack.

The object is to move all of the discs from Tower 1 to Tower 2, the middle of the three towers. There are three rules to follow in moving the discs:

1) Only one disc can be moved at a time.
2) A disc is moved by removing it from the top of the stack of discs of one tower and placing it on the top of a stack of discs of another tower.
3) No disc may ever be placed on top of a smaller disc.

The program given here is written in Level II BASIC for the Radio Shack TRS-80. The user has the options of solving the puzzle himself or watching the computer solve it. In either case, the user has the choice of the number of discs to be used, up to a maximum of 15 . The program also provides a time estimate for how long the solution will take. This is helpful in the case of 15 discs where at least 32,767 moves are required. When the computer solves the puzzle, the user has the option of controlling the length of time between moves. This feature is helpful for demonstration purposes.

The method used by the computer is recursive, which means that the routine to determine the moves calls upon itself. The basic principle here is that if you have a routine to successfully move $\mathrm{n}-1$ discs from Tower i to Tower j , for any i and j , then you can move n discs from Tower i to Tower j by the following procedure:

1) Move $n-1$ discs from Tower i to Tower k.
2) Move 1 disc from Tower i to Tower j.
3) Move $n-1$ discs from Tower k to Tower j.
where k is the number of the Tower which is not Tower i or Tower j . In other words, $\mathrm{k}=6-\mathrm{i}-\mathrm{j}$. This recursive procedure is shown in statements 1000-1100.

This program has been used with students at both the elementary and the secondary level. The puzzle is explained by showing the students the computer solution with three discs. Usually, about a three second delay is requested between moves so that an explanation of each move can be given. Following this, the students are asked to solve the puzzle with four discs and compare their number of moves to what the computer reports as optimum. After several tries or after they do obtain the optimum number of moves, they watch the computer solve the puzzle for four discs, and then go on to try it for five. After the optimum effort for five discs is found, the students are encouraged to conjecture on the effort needed for six or more. For a larger number of discs, running the program at least to the point where the time estimate is produced is also interesting.
$(S)=E: F 1(S)=F: D 1(S)=D$
$S+1: D=D-1: F=G$
SUB 1000
$E 1(S): F=F 1(S): D=D 1(S)$
$S U B \quad 2000$
$S+1: D=D-1: E=6-E-F$
SUB 1000

 XT I \quad I \quad B－ND +1 STEP－ 1 $\begin{array}{lll}\mathrm{J}=20-\mathrm{W} & \text { T0 } 20+17\end{array}$ T（J，I） z M PRINT TIME ESTIMATE $0: H=0: M=0$$T>=86400$
THEN $D=I N T(T / 86400): ~ P R I N T ~ D ; ~ " D A Y S " ; ~$ $T>=3600$ THEN $H=I N T(T / 3600)$ ：PRINT H；＂HOURS＂； $T>=60$ THEN $M=$ INT（T／60）：PRINT M；＂MINUTES＂； $\begin{array}{r}\circ \\ 2 \\ \frac{8}{3} \\ \hline\end{array}$ ；＂SECONDS＂．

$$
\begin{aligned}
& \mathrm{I}=1 \mathrm{TO} \quad 1500: \text { NEXT I } \\
& \text { URN }
\end{aligned}
$$

 NOVE A DISC FROM TOWER E TO TOWER F．FROM＂； M MOVE A DISC FROM TOWER E TO TOWER F，
$=K T+1: B=N D+10:$ PRINTe
STRS（KT）；$"$. MOVE

 R CHECK RESPONSE R TO SEE IF IT IS BETNEEN LO AND H1． R＜＞INT（R）THEN
R＜LO THEN PRINT＂RESPONSE NUST BE NO LESS THAN＂； $\mathrm{LO}: \quad \mathrm{B}=1:$ RETURN R $>$ H1 THEN PRINT＂RESPONSE NUST BE NO MORE THAN＂；H1：B＝1：RETURN O：RETCRN
RHEK RESPONSE R\＄FOR YES OR NO．
RS＝＂YES＂THEN R＝1：RETURN
R $\$=$＂NO＂THEN $R=2$ ：RETURN F RS＝＂YES＂THEN R＝1：RETURN
F RS＝＂NO＂THEN $\mathrm{R}=2$ ：RETURN
RINT＂PLEASE ENTER YES OR NO． RINT＂PLEASE ENTER YES OR NO．＂：R＝3：RETURN REM DRAN TOWERS

$$
\begin{aligned}
& \text { INT }((N D+10) / 2) * 64-64 \\
& \text { INT } \\
& \text { IN }
\end{aligned}
$$

$\mathrm{I}=1$ TO 3
NTe $\mathrm{L}+20^{\star} \mathrm{I}-12$ ，＂TOWER＂；$;$ ；$; ~$ ©．．IONVH Jo צamoLa، ${ }^{\circ}$ OSI + TeLN

$I=1$ TO ND

$1)=N D: N(2)=0: N(3)=0$

 응뮤무웅 응ㄴㅇㄴ 응융 움영$8 ⿻ 上 丨_{8}^{2}$ 온ํํํ 훌ํํ 울쿰요 운

易合
우ㄴㅜㅗ
윤융

TOWER LISTING

