
‘. ,/, J..i!l I’ 1 stools for Web-Based Sorting Animation I. T, I ‘1 /,, ‘. 
)I ,1_/, ,‘I ’ ’ ‘Herbert L. Dekshem Peter Brummund - 1.1 ’ ‘Depafitie’kit of Computer Science Department of Computer Science 

Taylor University 
Upland, IN 

brummund@taylor.edu 

j /- ./., 

“,Hbpe College ’ 
Holland, MI 49422-9000 
dershem@cs.hope.edu 

Abstract 

There is a long and rich tradition of sort algorithm anima- 
tions that have been used effectively in instruction. This 
paper describes a new tool that combines the best of this tra- 
dition with the advantages of being in the form of an applet 
for use on the World Wide Web and of animating the code of 
the algorithm in concert with the animation of the data. In 
addition, this tool facilitates student-designed animations 
that are useful for the debugging of student-written sort algo- 
rithms. Recursive sort algorithms are made more accessible 
through the use of a special feature of the tool that animates 
the recursion. 

1. Introduction 

Animation of sort algorithms has a long history in computer 
science education, starting with the Sorting Out Sorting 
video in 1981 [l]. This video introduced the idea of repre- 
senting data elements in a sort by bars with length of the bar 
corresponding to the sort key value of the element. It also 
used highlighting to indicate elements being compared and 
concluded with a race of the nine algorithms examined. 

Sorting Out Sorting set such a high standard that as algo- 
rithm animation systems such as GAIGS [2], Tango [3], and 
Balsa [4] were developed, they focused on animations of 
algorithms other than sorting, although sorting animations 
were developed in all of these. None of these presented a sig- 
nificant improvement over Sorting Out Sorting beyond their 
flexibility to work on user-provided data. 

The advent of the World Wide Web and Java applets has 
opened up a new era for algorithm animations, permitting 
remote interactive access to such animations with platform 
independence and an ability to link animations to text, 
sound, and video[5]. Most algorithm animation systems are 
presently either on the web or in the process of migrating 
there. 
Permission to make digital/hard copies of all or part ofthis material for 
personal or classroom use is granted without fee provided that the copies 
NC not made or distributed for profit or commercial advantage, the copy- 
right notice, the title ofthe publication and its date appear. and notice is 
given that copyright is by permission of the ACM, Inc. To copy othenvise, 
to republish, to post on servers or to redistribute to lists, requires specific 
permission and/or fee. 
SIGSCE 98 Atlanta GA USA . 
Copyright 1998 0-89791-994-7/9812..%5.00 

Algorithm animation can be coupled with code animation by 
including a separate window or frame where the code for the 
algorithm is found. Animators using this technique highlight 
the line of code being executed in the algorithm simulta- 
neously with the algorithm animation activity. This permits 
students to see how the execution of program code corre- 
sponds to the steps of the animation. This coupling with code 
animatiorrhas been implemented in JCAT[6] using pseudo- 
code, ZStep 95[7] using LISP, and in AdaVision[8] using 
Ada. I 

Systems of algorithm animation that facilitate user-designed 
animations are a more recent innovation. This approach has 
recently been advocated as pedagogically advantageous by 
Stasko[9]. 

The project described in this paper adds the recent advances 
of web access, code coupling; and user design to the proven 
features of the Sorting Out Sorting video, resulting in an 
effective tool for teaching and learning sort algorithms. In 
addition, an animation technique is added to enhance student 
learning o$ how recursion occurs in sorting algorithms. 

2. The Sort Animator ‘Appilet 

The Sort Animator is a Java applet that provides a split win- 
dow showing the sort animation in the left frame and the 
code animation in the right frame. The basic structure of Sort 
Animator is illustrated in Figure 1. 

The vertical bars in the left frame represent the elements to 
be sorted with the horizontal coordinate showing the position 
or index of the element in the sort list and the vertical coordi- 
nate representing the magnitude of the element’s sort key. As 
the algorithm executes, the bars move as data movement 
occurs in the sort list. The line of code being executed at 
each point in time is highlighted inside ,the right frame. <.’ 

The user has many controls over this animation, all of which 
can be modified at any point of the algorithm’s execution. 
The user may specify five different colors to the sort anima- 
tor, using buttons in the upper left ‘portion of the window. 
These specify the background color for the sort animation, 
three bar colors, and the-color used to highlight lines of code. 
The bar colors are for bars that are presently being inspected 

222 



Applet 
_-__ __. -_.- .__ -._~-_-.__-----_~_-__-~_-- ._-_._ ___.._- -_ 

ackground Foreground Sorted lnspectlon Highlight # of Blockr Arrangement Speed = 1 

Fotfcounter = 0; countercsize: countertt) C 
For(countet2 = 1: counter2 c (size -countei): counted+ 

iKnumarrayLcounter2-ll > numarray[count&D f 
temp = numerrayfcounter21 
numarray[countenl = numarray[counteR-13: 
nqmarrayCcounter2-111 temp; 

3 
3 

3 

1 Sort Control Stop Control # of Comparisons # of Swaps Explanation Algorithm 

1 Applet started. 
Figure 1. Sort Animator View 

by the algorithm, those that are already in their sorted posi- 
tion, and those that fit into neither of these categories. These 
four colors may be ‘modified at any time during the anima- 
tion without disrupting the algorithm. 

The user may also specify the number of elements being 
sorted. This number may be as large as 900. The arrange- 
ment of the data can be random, ascending, or descending, 
depending on the user’s selection. Changing the number of 
blocks or the arrangement results in an immediate halt of the 
present sort execution and a restart with the new parameter in 
force. 

The speed control is in the upper right comer of the window 
and manages the speed of the animation. A slide bar deter- 
mines the speed of the algorithm. If the speed is set to zero, 
the algorithm comes to a temporary halt. By manipulating 
this bar appropriately the user can observe the algorithm in 
detail by stepping &rough under mouse control or by nm- 
ning the algorithm at a very slow speed. Once the,user has 
grasped the general approach of the algorithm, a faster speed 
can be selected for completion of the algorithm. High speed 
animation may also enhance algorithm understanding by 
giving a better overview of the sorting strategy. : . ” 

The execution of the algorithm is controlled by the two but- 
tons in the lower left portion of the window. The “Sort” but- 

223 

ton begins the sort animation and its label changes to 
“Pause” when the animation is active. The “Stop” button 
halts the Soit with no possibility of resuming the interrupted 
sort, although another sort can be initiated following “Stop” 
button selection. ’ ‘, , ,, *: 

When the explanation button is selected, a ‘window appears 
that c&tains a text-based ‘description or explanation of the 
sort algoritbm. The Algorithm button permits the selection 
of a sort algorithm. Presently there are six algorithms pro- 
vided although moie will be’added in the near future. 

A running display of the number of comparisons and swaps 
is shown at the bottom of the window. The code for the algo- 
rithm is in the right frame. The lines of code are highlighted 
as they are executed by the animation. The code currently 
provided with the Sort Animator is in Java, although this 
need not be the case. Code in any language could be used to 
express the algorithms, including pseudo-code. 

3. Animation of Recursion 

A useful feature of the Sort Animator is its manner of dis- 
playing recursive sort algorithms. A collection of horizontal 
bars is added at the top of the left frame to indicate the level 
of recursion and the part of the sort list that is sorted by each 
recursive call. The vertical position of the bar in used to indi- 



cate the level of recursion with the top bar drawn when the 
initial call is made, a bar underneath the first bar at the sec- 
ond level drawn when the first recursive call is made, and 
each succeeding call resulting in a bar drawn one level fur- 
ther down. The horizontal extent of each bar will exactly 
cover the portion of the sort list that is assigned to the corre- 
sponding recursive call. 

This technique for illustrating recursion has the added 
advantage that it provides a history of the sort as well. Figure 
3 shows the completion of the sort that was in progress in 
Figure 2. The horizontal bars reflect the history of the quick- 
sort with the partitions at each level clearly identified. The 
pivot element at each level is also identified by the position 
of the space between the bars. 

Figure 2. Quicksort animation in progress 

Figure 2 shows a quicksort animation in progress. Each hori- 
zontal bar at the top of the left frame represents a recursive 
,call that, has %been made. The top b,T is the original sort call 
on the entire list. The two shorter bars at the second level are 
the two recursive calls made from the first activation of pro- 
cedure sort. ‘The ieft of those tie is darker indicating it has 
already been completed. At the third level, the two darkened 
bars to the left indicate that those have been completed while 
the lighter colored bar on the right, is the sort range that is 
currently active. The remaining bars at levels four and five 
indicate furthk{complete$ sort calls: In Figures 2,6 calls have 
been completed and 3 are still active. At any time, the lowest 
lighter-colored bar represents the range of the active sort. 

4. Sort Animation Builder 

The Sort Animation Builder uses the I ame animation envi- 
ronment as the Animator. The sort algorithm is provided by 
the user along with special instructions to direct the anima- 
tion. To illustrate the simplicity of building an animation, an 
example is shown in Figure 4. This is the code that the user 
would provide for a simple recursive selection sort with the 
animation control statements accompanied by explanatory 
comments. 
import java.awt.*: 
class UserThread extends SortThread f 

static int level - 0: 

public UserlhreadCSortClass teep) f 

1 
supdtenp): 

int findalnClnt first. Int last) f 
int ainloc - first: 
int i: 
for (i-flrst+l: I<-last: I+*1 f 

ifa:~;r;ty(ainloc.i)) // greater conpares elements at rlnloc and 1 
-: 

1 , 
return einlcc: 

1 

void sortcint first. int last1 f 
drarBar(first.last.O.sorter.sra color): I/ draws horizontal bar 
skipStatenents(O.1): I/ highlights statements o and 1 with delay 
if Clewfirst) f 

int seal1 - findnin(first.last): 
~setColorAt(seall.sorter.srapcolor~: N Sets tolor of alseent at small 

/I highlights statewnt 2 ulth de 
// highlights statement 3 rithlda 
// resets highllght on stateeont 
N swaps eleaents first and seal1 
// colors first eleeont sortod 

dehIghlightW: i I/ dehi hl,ights statoront 3 
skipStateasntsC4.4): // hijhgights stateeont 4 with de 
drarBarCflrst.lest.0.sorter.backcolor): / draws hor bar from first t 

last at depth o with backs 
drarBar(first.first,O,sorter.sortedc~~or~: N,dravs hor bar from firs 

If first at deoth 0 rl th sortod c 

3 sortCfirst+l.lest): , 

&se f 
'rarWortedCfirst1: I/ colors first element sorted 
drar~arCfirst.first.O.sorter.sorfedcolor~~ // draws hor bar from firs 

// first at depth 0 rith sorted c 

~kipStateeents(S.6): // highlights statoeonts 5 and 6 with de 
1 

public void mealnO f 

I 
sortC0, getSizeO-1): 

1 I 3 

Figure 4. Sort Animaior Code for Selection Sort 

To build a sort, the user provides a runmain ( ) function in 
the UserThread class. This class inherits all of the anima- 
tion functions from its parent class, SortThread. The 
functions setColorAt, color, greater, and swap 
control the animation of the, data elements, the function 
drawBar controls the horizontal bars that illustrate recur- 
sion,and the functions skipStatements,highlight, 
and dehighlight control thecodeanimation. Otherfunc- 
tions are available beyond those used in this illustration. Fig- 
ure 5 shows a mid-sort window generated by the code in 

224 



Figure 4. The code used for the code animation in the right 
frame is provided by the user in a separate file. 

5. Conclusions 

The Sort Animator and Sort Animation Builder provide a 
number of significant benefits to students learning sort algo- 
rithms and to their teachers as well. These tools are Java 
applets that can be run over the World Wide Web, making 
them accessible to students in a variety of settings. This 
includes the closed laboratory, the open laboratory, and on 
their own computer systems. 

The animation of the algorithm’s code along with its visual 
animation gives the student an explanation of each step as it 
is being carried out. This enhances the understanding of both 
the code and the algorithm as well as how they correspond to 
each other. The Sort Animation Builder permits the teacher 
and the student to implement code and algorithm animations 
themselves 

These tools can be used in a variety of ways in courses where 
sort algorithms are discussed. First, they are valuable for 
classroom demonstrations. The instructor, while describing 

the sort algorithm, can step through its execution, describing 
the role of each pertinent step and addressing student ques- 
tions. The Sort Animation Builder permits the instructor to 
implement algorithms or code from the textbook or algo- 
rithms of the instructor’s own choosing. 

A,second use of these tools is in student laboratory exercises. 
In such exercises, students can be asked to do comparative, 
empirical analysis of algorithms, aided by the Sort Anima- 
tor’s view of the count of key operations. Also, since the ani- 
mations are run as Java threads, it is possible for the students 
to conduct sort races to observe the relative efficiency of 
so@. Another tool sometimes used in labs is to have the stu- 
dents observe the sort animation without the accompanying 
code, and identify from the animation the sort algorithm 
under observation from among ,those studied in class. It is 
also possible, within a lab setting, to have students observe 
the different behavior of the sort algorithms when the sort 
list is in order before the sort algorithm begins. 

A.final use of these tools is to have students design their own 
animations...This approach has been recommended as an 
effective learning tool by Stasko [9], and the Sort Animation 
Builder gives the student a natural, easy-to-learn way to 

225 



implement such animations. As students debug their algo- [9 Stasko, J.T. Using Student-Build Algorithm Animations 
rithm and code, they will find the algorithm/code animation as Learning Aids. Proceedings of the ZJventy-eighth SIGCSE 
helpful in this process as it provides two of the three visual- Technical Symposium on Computer Science Education 
ization approaches explored by Baecker et al[ lo]. (SIGCSE Bulletin), 29, 1 (Mar. 1997), 25-29. 

The tools described here are available through a web site 
developed by the second author. This site contains links to an 
extensive collection of web-based animations of many dif- 
ferent algorithms, including sort algorithms. It also contains 
a link to the Sort Animator and the Sort Animation Builder. 
The web site is located at 

[lo] Baecker, R., DiGiano, C., and Marcus, A. Software 
Visualization for Debugging, Communications of the ACM 
40,4 (Apr. 1997), 44-54. 

www.cs.hope.edu/-alganim/ccaa/ccaa.html 

Acknowledgments 

The authors would like to thank James Vanderhyde, who 
contributed many helpful ideas to this project. This work was 
partially funded by the National Science Foundation, Grant 
Number CDA-9423943-03. 

References 

[l] Baecker, R.M. Sorting out Sorting, color/sound film, 
University of Toronto, 1981. Distributed by Morgan Kauf- 
mann, San Francisco1 

[2] Naps, T.L. Algorithm Visualization in Computer Science 
Laboratories, Proceedings of the Twenty-first SIGCSE Tech- 
nical Symposium on Computer Science Education (SIGCSE 
Bulletin), 22, 1 (Feb. 1990), 105110. 

(31 Stasko, J.T.‘Tango: A framework.and ‘system’ for algo- 
rithm animation. IEEE’Computer, 23;9 (S&k 1990), +39-44. ” : : ‘i! 

[4] Brown, ‘M.H. Exploring algorithms using BALSA-II. 
IEEE Computer, 21,5 (May 1988), 1436. ’ 

[SJ Naps, T.L. ,Algoritl@ visualization served off the World 
Wide Web:’ wlijr and how. Praceedings SIGCSE/SIGCUE 
‘96, Barcelona, Spain (June 1996), pp. 66-71. ’ ’ ’ .( Ii >,i.. 

’ 
[6] Brown, M:H!’ and Najork, MA. Collaborative, Active 
Textbooks: A Web~Based Algoiithm’ Animation System for 
an Electronic Classroom. ‘Digital Systems’ Research Center 
Research Report 142, 1996. ‘!I? ,1 ;: 

/et %. ,. 

[7]‘Ungar’DY, Lieberman, H.‘and Fry; C.‘Dkbugging and the 
Experience of 1mmedkcy:Communicatians 'of the ACM 40, 
4 (Apr. 1997), 38-43. .-. 9. 

‘, 

[8] Dershem, H.L., Barth, W.L., Bowsher, C.J., and Brown, 
D.P: Data St&&ures with Ada Packages, Laboratories, and 
Animations. Praceedings of the ‘First Australasian Confer- 
e&e on Computer Science Education, Sydney, Australia, 
(June 1996), pp: 3’2-38. ” ’ 

, 

’ .s 

.  i 

226 


